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Abstract Approximate Bayesian inference on the basis of
summary statistics is well-suited to complex problems for
which the likelihood is either mathematically or computa-
tionally intractable. However the methods that use rejection
suffer from the curse of dimensionality when the number of
summary statistics is increased. Here we propose a machine-
learning approach to the estimation of the posterior density
by introducing two innovations. The new method fits a non-
linear conditional heteroscedastic regression of the parame-
ter on the summary statistics, and then adaptively improves
estimation using importance sampling. The new algorithm
is compared to the state-of-the-art approximate Bayesian
methods, and achieves considerable reduction of the com-
putational burden in two examples of inference in statistical
genetics and in a queueing model.
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1 Introduction

Making use of simulations to perform non-Bayesian infer-
ence in models for which the likelihood is neither analyt-
ically solvable nor computationally tractable has a well-
established methodology that finds its roots at least in the
seminal papers of Diggle and Gratton (1984) and Gourier-
oux et al. (1993). This approach bypasses explicit likelihood
functions by simulating from an implicit statistical model—
that is, a model defined in terms of a stochastic generating
mechanism.

In the Bayesian setting, there has been a growing inter-
est in implicit statistical models for demographic inference
in population genetics (Marjoram and Tavaré 2006). Statis-
tical inference with population-genetic data usually requires
prior knowledge on genealogical trees. As the tree is usually
considered as a nuisance parameter, Bayesian Monte Carlo
is a natural approach to average over high-dimensional tree
space. Although many likelihood-based methods have been
proposed in this framework, these methods are restricted
to particular demographic and genetic processes (Stephens
and Donnelly 2000; Wilson et al. 2003; Kuhner 2006;
Hey and Nielsen 2007). Alternatively, likelihood-free meth-
ods, named approximate Bayesian computation (ABC) after
Beaumont et al. (2002), have gained many advocates in the
recent years. The principle of standard ABC (Tavaré et al.
1997; Pritchard et al. 1999; Beaumont et al. 2002) relies
on the simulation of large numbers of data sets using para-
meters drawn from the prior distribution. A set of summary
statistics is then calculated for each simulated sample, and
compared with the values for the observed sample. Parame-
ters that have generated summary statistics close enough to
the observed data are retained to form an approximate sam-
ple from the posterior distribution.

http://dx.doi.org/10.1007/s11222-009-9116-0
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Approximate Bayesian estimation algorithms—that were
originally all based on rejection algorithms—can be clas-
sified into three broad categories, resembling the main-
stream methods that are applied in standard computational
Bayesian statistics (Gelman et al. 2003). The first class of
methods relies on the direct rejection algorithm as described
in the previous paragraph (Tavaré et al. 1997; Pritchard
et al. 1999). The second class of algorithms mimics Markov
chain Monte Carlo methods (MCMC, Robert and Casella
2004), embedding simulations from the implicit model in
the updating step of the stochastic algorithm (Marjoram
et al. 2003; Bortot et al. 2007). The MCMC-ABC algo-
rithm takes into account the distance between the simulated
and the observed summary statistics into the Metropolis-
Hastings acceptance rule. The third class of algorithms
shares similarity with the recently introduced sequential
Monte Carlo samplers (SMC, Liu 2001). The main SMC-
ABC algorithm combines ideas underlying rejection meth-
ods and sequential importance sampling (Sisson et al. 2007;
Beaumont et al. 2009; Toni et al. 2009).

Nevertheless, a severe limitation of rejection-based gen-
erative algorithms arises when the dimensionality of the set
of summary statistics increases. Because the three classes
of methods attempt to sample from a small multidimen-
sional sphere around the observed summary statistics, all of
them suffer from the curse of dimensionality (see e.g. Här-
dle et al. 2004). To overcome this problem, Beaumont et
al. (2002) allowed for larger acceptance rates in the rejec-
tion algorithm, ranging up to 20 percent of the simulated
values, and then performed local linear adjustment in order
to correct for the discrepancy between the simulated and the
observed statistics. Here, we address the curse of dimension-
ality issue by adopting a machine learning perspective con-
structing a functional relationship between the generated set
of summary statistics and the model parameters. Assuming
perfect construction, this relationship could ideally be uti-
lized to produce samples from the posterior distribution by
exploiting information not restricted to a subset of generated
values, but to the extended set.

In the first stage, our approach infers the functional re-
lationship linking the summary statistics to the model para-
meters by considering a flexible nonlinear conditional het-
eroscedastic (NCH) model. Flexible regression models, like
neural networks, are exploited to reduce dimension and to
better account for the correlation within the set of summary
statistics. In the second stage, we introduce an adaptive ver-
sion of the NCH (ANCH) algorithm using importance sam-
pling. The rationale of the adaptive algorithm is to iteratively
limit the discrepancy between the sampling distribution and
the posterior distribution, which may be particularly useful
when the prior distribution is vague. In two historical exam-
ples of demographic inference in population genetics and in
an example of a queueing process, we provide evidence that

the NCH and the ANCH algorithms reduce the computa-
tional burden when compared to ABC with rejection and to
ABC with local linear adjustment.

2 Method

Rejection and weighting In ABC, we assume that there is a
multidimensional parameter of interest φ, and the observed
value s of a set of summary statistics S is calculated for
the data. To make statistical inference, a rejection-sampling
method generates random draws (φi, si ) where φi is sam-
pled from the prior distribution, and si is measured from
synthetic data, simulated from a generative model with para-
meter φi . Setting the tolerance error to a value δ and denot-
ing by ‖.‖ the Euclidean norm, only parameters φi such that
‖s − si‖ ≤ δ are retained. Because the summary statistics
may span different scales, norms that use rescaled distances
are often considered in place of the Euclidean distance. In
our application of ABC, we rescale distances by the me-
dian absolute deviation of the simulated summary statistics
si , i = 1, . . . ,M . For this basic rejection algorithm, the ac-
cepted φi form a random sample from the approximate pos-
terior distribution defined as

pδ(φ|s) ∝ Pr(‖s − si‖ ≤ δ|φ)p(φ)

where p(φ) denotes the prior distribution. Compared to the
exact expression of the posterior distribution, the likelihood
is replaced by

p(s|φ) ≈ Pr(‖s − si‖ ≤ δ|φ).

If the summary statistics are sufficient with respect to the pa-
rameter φ, the approximate posterior distribution converges
to the true posterior distribution as δ goes to 0. In addition,
the approximate posterior distribution corresponds to the
prior distribution when δ is large. Note that more generic in-
terpretations of the ABC algorithm can be found in Wilkin-
son (2008).

Beaumont et al. (2002) introduced a first improvement
of the standard rejection ABC algorithm in which the pa-
rameters φi were weighted by the values Kδ(‖si − s‖),
where Kδ is the Epanechnikov kernel. Using this weighting
scheme, an estimator of the posterior mean was then given
by

∑
i Kδ(‖si − s‖)φi/

∑
i Kδ(‖si − s‖). Although this was

not originally stated, it can be seen that it corresponds to the
Nadaraya-Watson estimator, a classic approach in nonpara-
metric regression (Nadaraya 1964; Watson 1964). Note that
the Nadaraya-Watson smoother is known to be subject to
the curse of dimensionality since the rate of convergence of
the estimator decreases dramatically as the dimension of the
summary statistics increases (see e.g. Härdle et al. 2004).
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A local linear model To avoid the curse of dimensionality,
Beaumont et al. (2002) also described the posterior density
as a homoscedastic linear regression model (in fact, a local-
linear model) of the form

φi = α + (si − s)T β + ζi, i = 1, . . . ,M, (1)

where α is an intercept, β is a vector of regression coef-
ficients, and the ζi ’s are independent random variates with
mean zero and common variance. We further refer to this
algorithm as the LocL ABC model. In the LocL model, the
parameters (α,β) are inferred by minimizing the weighted
least-squares criterion

M∑

i=1

{φi − (α + (si − s)tβ)}2Kδ(‖si − s‖). (2)

If (1) exactly describes the relationship between φ and s,
random draws of the posterior distribution can simply be
obtained as α + ζi , for i = 1, . . . ,M . Using the empirical
residuals in place of the ζi ’s, the parameters are adjusted as

φ∗
i = φi − (si − s)T β̂. (3)

Weighted by Kδ(‖si − s‖), the φ∗
i ’s, i = 1, . . . ,M , provide

an approximate sample from the posterior distribution. In
this approach, the choice of δ involves a bias-variance trade-
off: Increasing δ reduces variance thanks to a larger sample
size for fitting the regression, but also increases bias arising
from departures from linearity and homoscedasticity.

A nonlinear conditional heteroscedastic model In this
study, we introduce an important modification on the pre-
viously described adjustment-based ABC method for con-
ditional density estimation. In order to minimize departures
from linearity and homoscedasticity, we propose to model
both the location and the scale of the response parameter,
φi , in (1) (see e.g. Fan and Yao 1998). The new regres-
sion model takes the form of a nonlinear conditional het-
eroscedastic model

φi = m(si ) + σ(si ) × ζi, i = 1, . . . ,M, (4)

where m(si ) denotes the conditional expectation,
E[φ|S = si], and σ 2(si ) denotes the conditional variance,
Var[φ|S = si].

The conditional expectation can be estimated as m̂(si ) by
fitting a flexible non-linear regression model. The variance
term is then estimated using a second regression model for
the log of the squared residuals

log(φi − m̂(si ))
2 = logσ 2(si ) + ξi, i = 1, . . . ,M, (5)

where the ξi ’s are independent random variates with mean
zero and common variance. In our forthcoming examples,

we consider feed-forward neural network (FFNN) regres-
sion models (Ripley 1996; Bishop 2006). This choice is
motivated by the fact that FFNNs include the possibility
to reduce the dimensionality of the set of summary statis-
tics via internal projections on lower dimensional subspaces
(Bishop 2006).

In FFNN regression models, linear combinations of the
inputs—i.e. the summary statistics—are transformed to
compute the values zj , j = 1, . . . ,H at the H hidden units

zj = h

(
D∑

k=1

w
(1)
jk sk + w

(1)
j0

)

, j = 1, . . . ,H, (6)

where sk , k = 1, . . . ,D, is the kth component of s, H is
the number of hidden units in the network, D is the di-
mension of the vector s of summary statistics, the w

(1)
jk ’s,

k = 1, . . . ,D, j = 1, . . . ,H are the weights of the first layer
of the neural network, and h denotes the logistic function.
Because the number of hidden units H is typically smaller
than the number of summary statistics D, (6) reduces the
initial dimension of the vector of summary statistics. The
values zj , j = 1, . . . ,H , of the hidden units are then linearly
combined to produce the output gw(s) of the FFNN

gw(s) =
H∑

j=1

(w
(2)
j zj + w

(2)
0 ), (7)

where the w
(2)
j ’s, j = 1, . . . ,H , are the weights of the sec-

ond layer of the neural network. Note that logistic regres-
sion can easily be performed within the FFNN framework
by transforming the linear combination of (7) with a logis-
tic function. The extension to general discrete parameters is
obtained using a softmax transformation (see Bishop 2006).

We use FFNNs for fitting both m(si ) and logσ 2(si ) (Nix
and Weigend 1995). The weights w of a first FFNN are
found by minimizing the regularized least-squares criterion

M∑

i=1

{φi − gw(s)}2Kδ(‖si − s‖) + λ‖w‖2,

where λ represents the regularization parameter, called
weight-decay parameter in the neural network literature. The
weights of a second FFNN estimating the conditional vari-
ance, are found by minimizing

M∑

i=1

{log((φi − m̂(si ))
2) − gw′(s)}2Kδ(‖si − s‖) + λ‖w′‖2.

Similarly to (3), parameter adjustment under the NCH
model can be performed as follows

φ∗
i = m̂(s) + (

φi − m̂(si )
) × σ̂ (s)

σ̂ (si )
, i = 1, . . . ,M. (8)
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Assuming that φi = m(si ) + σ(si )ζi corresponds to the true
relationship between φi and si , then the φ∗

i ’s form a random
sample from the distribution p(φ|s) provided that m̂ could
be considered equal to m and σ̂ equal to σ .

Similarly to the LocL ABC method, a tolerance error, δ,
is allowed, and the adjusted parameters, φ∗

i , are weighted by
Kδ(‖si −s‖). Furthermore, to warrant that the adjusted para-
meters, φ∗

i , obtained from (3) or (8), fall in the support of the
prior distribution, we sometimes consider transformations of
the original responses. Parameters that lie in an interval are
transformed via the logit function, and nonnegative parame-
ters are transformed using a logarithm. These transforma-
tions have the further potential advantage of stabilizing the
variance of the response when performing regression (Box
and Cox 1964).

Iterated importance sampling A second change to the
LocL ABC algorithm converts the single-stage regression
based ABC method into a multi-stage algorithm in which
estimations are improved iteratively (Liu 2001; Sisson et al.
2007). In practice, we implemented a two-stage algorithm.
The logic of using a two-stage algorithm is that the second
run can control a first run with a high acceptance rate, and
adaptively builds a better approximation of the posterior dis-
tribution. If the two empirical distributions obtained after
each step of the ANCH algorithm agree, then the results can
be pooled to form a larger approximate sample from the pos-
terior distribution.

The adaptive NCH algorithm can be described as follows:
Starting from a sample (φ1

i ) obtained from a first NCH ABC
run, the adaptive step of the algorithm consists of estimating
the support 
1 of the sample. Then new parameters are pro-
posed from the conditional prior distribution p
1 given that
they fall in 
1. This can be implemented using a simple re-
jection step. For φ having a moderate number of dimension,
this is usually achieved at a computational cost which can
be considered significantly lower than the cost of simulat-
ing from the generating distribution, p(s|φ). Using this new
set of parameters, a second sample, (φ2

i ), can be formed us-
ing the NCH method again. To compensate for the fact that
we do not sample from the prior distribution, each value φ2

i

should in principle be weighted by p(φ2
i )/p
1(φ

2
i ). Here,

the importance weights need not to be computed because
we have p
1(φ

2
i ) = p(φ2

i )/p(
1), which means that the ra-
tio p(φ2

i )/p
1(φ
2
i ) does not depend on i. In this two-stage

approach, we suppose that 
1 approximates the support of
p(s|φ) accurately. For multidimensional parameters φ, we
estimate the support of the distribution using support vector
machines (SVM, Schölkopf et al. 2001).

3 Examples of implicit statistical models

In this section, we present three examples of implicit statis-
tical models, two of which have received considerable atten-

tion in population genetics, and the last one has served to il-
lustrate indirect inference (Gourieroux et al. 1993; Heggland
and Frigessi 2004). Using these examples, we performed
an empirical evaluation of the relative performance of three
regression-based approximate Bayesian algorithms, the lo-
cal linear regression model (LocL ABC model), the non-
linear conditional heteroscedastic model (NCH model), and
its adaptive implementation (ANCH model). We used the R
programming language to implement the LocL, NCH and
ANCH algorithms. Least squares adjustment for neural net-
works was implemented using the R package nnet (R De-
velopment Core Team 2008). Model choice for neural net-
works was based on a Bayesian (or regularization) approach
(Ripley 1996). We used H = 4 hidden units and the weight-
decay regularization parameter was set equal to λ = 0.001.
Increasing the weight-decay parameter will increase the bias
of the estimator, but it will also decrease its variance. At
this stage, cross-validation might be a useful alternative ap-
proach to the choice of a FFNN model, but the previous val-
ues for λ and H proved to work well in the examples consid-
ered here. In the ANCH algorithm, the support of the condi-
tional density was estimated using a SVM ν-regression algo-
rithm (ν = 0.005) as implemented in the R package e1071
based on the public library libsvm (Chang and Lin 2001).

Two examples in population genetics There has been
tremendous interest in simulation-based inference methods
in evolutionary biology during the last decade (Fu and Li
1997; Pritchard et al. 1999; Fagundes et al. 2007). In these
applications, the inference of demographic and genetic pa-
rameters depends on the so-called coalescent approximation
which describes, in a probabilistic fashion, the ancestry of
genes represented in a sample. Coalescent models provide
good examples of implicit statistical models for which a
straightforward stochastic generating mechanism exists, but
the likelihood is usually computationally intractable (see the
Supplementary Material for further information).

Example 1 Given a set of n DNA sequences, the first prob-
lem concerns the estimation of the effective mutation rate,
θ > 0, under the infinitely-many-sites model. In this model,
mutations occur at rate θ at DNA sites that have not been
hit by mutation before. If a site is affected by mutation, it
is said to be segregating in the sample. In this example, the
summary statistic, s, is computed as the number of segregat-
ing sites. Note that s is not a sufficient statistic with respect
to θ (Fu and Li 1993). The generating mechanism for s can
be described as follows.

1. Simulate Ln, the length of the genealogical tree of the
n sequences, as the sum of independent exponential ran-
dom variables of rate (j − 1)/2, j = 2, . . . , n.

2. Generate s according to a Poisson distribution of mean
θLn/2.
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The simulation of Ln can be derived from the formula Ln =
∑n

j=2 jYj that gives the total length of the tree as a function
of the inter-coalescence times denoted by Yj , j = 2, . . . , n.
The inter-coalescence times correspond to the times during
which the sample has j ancestors, j = 2, . . . , n (Tavaré et al.
1997). In a wide range of models in population genetics, the
inter-coalescence times form independent random variables
distributed according to the exponential distributions of rate
j (j − 1)/2, j = 2, . . . , n. A more detailed description of the
coalescent process can be found in Tavaré (2004).

We computed the posterior distribution of the effective
mutation rate θ given the observation of s = 10 segregat-
ing sites in a sample of n = 100 DNA sequences. The prior
distribution for the parameter θ was taken to be the exponen-
tial distribution of mean 50, which was meant to represent
a vague prior. A sample from the posterior distribution was
obtained using a direct rejection algorithm accepting only
parameters that produced ten segregating sites exactly. Ten
millions of replicates were generated resulting in a sample
of size 39,059 after rejection.

For the ABC algorithms, we performed inference of the
posterior distribution using a total of 2,000 simulations of
the bivariate vector (θ, s). We recorded the three quartiles
and the 0.025 and 0.975 quantiles of the approximate pos-
terior distributions computed by the three algorithms, and
we compared these 5 quantiles Qk , k = 1, . . . ,5, with the
corresponding empirical quantiles, Q0

k , obtained from the
exact sample. For values of the tolerance rate between 0
and 1 and for each quantile, Qk , the accuracy of each al-
gorithm was assessed by the relative median absolute er-
ror (RMAE) defined as the median of (Qk − Q0

k)/Q
0
k com-

puted over 150 runs. In addition, we measured the discrep-
ancy between each approximate distribution and the empiri-
cal posterior distribution using the sum of the RMAE’s over
all quantiles. In the ANCH algorithm, the support was es-
timated as the range of the empirical distribution—i.e., the
(0,max) interval—obtained after a first run. A total of 1,000
replicates were used in the first run and the tolerance rate,
denotes as Pδ , was set to 75%.

Comparisons with standard rejection algorithms were
first conducted. We found that the posterior distribution ob-
tained from the rejection methods deviated from the em-
pirical posterior distribution significantly for tolerance rates
larger than 10% (Fig. 1a). The LocL model approximated
the posterior distribution accurately for small tolerance rates
(≤20%), but the performances of the LocL method deterio-
rated as the tolerance rate increased (Fig. 1, curves with di-
amonds). The performances of the NCH model were signif-
icantly less sensitive to the tolerance rate, staying at values
close to the optimum achieved by the LocL model (Fig. 1b,
curve with triangles point-up). The adaptive NCH algorithm
achieved even superior performances for values of the toler-
ance rate ranging between 0 and 90% (Fig. 1b, curve with

(a)

(b)

Fig. 1 Relative median absolute error (RMAE) when estimating the
quantiles of the posterior distribution of θ as a function of the tolerance
rate. In panel (a), the errors obtained with the regression algorithms
are compared to the errors obtained with the local linear adjustment. In
panel (b), the different regression methods are compared. For the quar-
tiles and for the 0.025 and 0.975 quantiles, relative errors between ap-
proximate quantiles computed by the ABC methods and empirical val-
ues from the posterior distribution were computed over the 150 repli-
cates. The sum of the RMAE’s was obtained by summing, over the
5 quantiles, the values of the relative median absolute differences. The
black dot corresponds to the rejection-free ANCH algorithm (tolerance
rate Pδ = 100%) without including the Epanechnikov weights

triangles point-down). The black dot in Fig. 1b represents
the performance of the ANCH algorithm without weight-
ing and allowing for total acceptance. Having eliminated the
concept of rejection in the approximate Bayesian algorithm,
i.e. setting Pδ = 1, the accuracy of the algorithm remained
close to the optimum achieved by all algorithms. This first
example illustrates the benefit of the NCH model over the
LocL model and the other rejection methods. The additional
gain of the adaptive step stems from the use of a vague prior,
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which, in this case, gave low weight to the region of poste-
rior values. We note, however, that for the smallest tolerance
rate, the RMAE is smaller in the LocL model than in the
NCH models. Because of the additional level of complexity
introduced in FFNNs, FFNNs require more data points to be
trained than local linear regression, but this not an issue for
higher tolerance rates.

Example 2 Turning to a more complex problem in which
the posterior distribution could not be estimated easily,
we considered an exponentially growing population model
with three parameters. Similarly to Weiss and von Haeseler
(1998), a population of size NA started to grow exponen-
tially t0 years ago to reach a present size of N individuals
where N = NA/α for a value α ∈ (0,1). We performed in-
ference on the two parameters NA, t0 and α was considered
as a nuisance parameter. In this example the data consisted
of a sample of n individuals genotyped at a multilocus subset
of independent microsatellite markers (see e.g. Zhivotovsky
et al. 2003). Microsatellite loci are characterized by a mo-
tif of two to four nucleotides that may repeat itself several
times, and the data are recorded as number of repeats for
each individual.

The generating mechanism for the implicit model can be
described as follows.

1. Simulate candidate coalescent genealogies with n tips in
a growing population for each marker.

2. Superimpose mutations on the tree branches according to
a specific mutation model.

Step 1 requires simulating coalescence times in a coalescent
model with varying population size (see Tavaré 2004 and
the Supplementary Material). In step 2, we used the single-
step mutation model, that can be viewed as a simple random
walk for which the +1 and −1 steps are equally likely (Ohta
and Kimura 1973).

To capture the pattern of genetic variation, we computed
six summary statistics previously reported to be sensitive to
the genetic diversity in the sample and to the intensity of
the demographic expansion. The amount of genetic diver-
sity was measured by the mean (over the loci) of the vari-
ance in the number of repeats and by the mean of their het-
erozygosities (Pritchard and Feldman 1996). For the demo-
graphic pattern, we used two imbalance indices studied by
King et al. (2000), the interlocus statistic introduced by Re-
ich and Goldstein (1998), and the expansion index of Zhiv-
otovsky et al. (2000). We also computed a seventh summary
statistic based on an observation of Shriver et al. (1997)
who studied the distribution, SK , of pairwise comparisons
that differ by K repeat units. This distribution has its peak
at the value 0 for a recent expansion, and the peak shifts
to the value 1 for older expansions. To compute the sev-
enth statistic, we averaged the quantity S1 − S0 over all the
loci.

We took a uniform prior distribution ranging from 0 to
100,000 years for the onset of the expansion, a uniform dis-
tribution over the interval (0, 10,000) for the ancestral popu-
lation size, and a uniform distribution over the interval (1,6)

for − log10(α).
One hundred test data sets were generated using t0 =

18,000 years for the date of onset of the expansion, NA =
1,500 for the ancestral population size, and α = 0.0012
(log10(α) = −2.92) for the ratio of the ancestral size to
the present population size. These values were very sim-
ilar to those used in Pritchard et al. (1999) in a study of
the Y chromosome in humans. For each algorithm, we com-
puted the posterior distribution of the three parameters given
the observation of the seven summary statistics in a sam-
ple of n = 100 individuals surveyed at 50 microsatellite
loci.

For the three algorithms, we generated samples from the
posterior distribution using 2,000 replicates from the im-
plicit model. We recorded the quartiles and the 0.025 and
0.975 quantiles of the output distributions for the three ABC
algorithms, and we compared these five values for the con-
ditional distributions of each parameter t0, NA, and α. The
median value of each quantile was then computed over 100
runs.

For each of the three parameters, the median estimates
of the quantiles of the marginal posterior distribution were
very similar in the NCH model and in the ANCH imple-
mentation (Fig. 2, curves with triangles point-up and point-
down). For large tolerance rates (Pδ ≥ 50%), we observed
a strong agreement with the values estimated by the LocL
model (Fig. 2, curves with diamonds) used with small tol-
erance rates (Pδ = 5%), indicating that the NCH model can
efficiently exploit simulation results that fall far apart from
the observed values of the summary statistics. The perfor-
mances of the LocL model decreased as the tolerance rate
increased above 20%, and the estimation of the conditional
distribution of the ancestral size provided evidence that the
bias was substantial (Fig. 2, bottom right panel). The three
algorithms gave similar results regarding the estimation of
α (results not shown).

To further compare the performances of the NCH model
and its ANCH variant, we studied a particular simulated data
set corresponding to the same ground truth as before. After
running the three algorithms 100 times for each tolerance
rate, the variance of each quantile in the posterior distri-
bution was of order three times higher in the NCH model
than in the ANCH algorithm (2,000 simulations for each al-
gorithm, Table 1). Clear evidence of the stabilization phe-
nomenon was also obtained under the infinitely-many-sites
model. Given s = 10 segregating sites, we ran the ANCH
algorithm using 200 simulations of the implicit model at
each step (tolerance rate Pδ = 85%). To compare estima-
tions obtained after the initial step with those obtained af-
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Fig. 2 The posterior quantiles of the date of onset of expansion and
the ancestral population size for the NCH and the ANCH methods
(left) and LocL ABC method (right). The quantiles are plotted against
the tolerance rate for the NCH and the ANCH methods (left) and
LocL ABC method (right). For each algorithm, the curves represent
the 0.025, 0.25, 0.5, 0.75, and 0.975 quantiles of the posterior distri-
bution. These values correspond to the median over the 100 test data
sets. The ground truth values are represented as the solid lines with-
out any symbols. The values of the quantiles estimated by the NCH
and ANCH methods using a tolerance rate Pδ = 75% match with those
obtained from the LocL algorithm using Pδ = 5%

ter adapting the support, we replicated the estimation pro-
cedure 100 times. The reduction in variance ranged from a
factor 2.7 to a factor 34.7. The highest reduction in vari-
ance was obtained for the estimation of the upper quan-
tile.

Example 3 Our third example arose from a totally different
context, and was formerly studied by Heggland and Frigessi
(2004) using indirect inference. The connection of indi-
rect inference to ABC is the following. Indirect inference
(Gourieroux et al. 1993) is a non-Bayesian method that pro-
ceeds in three steps. (1) An auxiliary model is introduced,

usually as a simplified version of the true model. (2) Esti-
mates of the parameters in the auxiliary model are obtained
and play the role of summary statistics. These estimates can
be obtained, for example, by maximizing the likelihood in
the auxiliary model. (3) An estimate of the parameter φ is
built by minimizing a weighted Euclidean distance between
simulated summary statistics and the observed summary sta-
tistics. Note that the introduction of an auxiliary model can
also be a useful means of finding informative summary sta-
tistics for ABC methods.

The model considered in Heggland and Frigessi (2004)
was a queueing system with a first-come-first-serve single-
server queue (M/G/1). The service times were uniformly
distributed in the interval [θ1, θ2], and the inter-arrival times
had exponential distribution with rate θ3. Let Wn be the
inter-arrival time of the nth customer and Un be the corre-
sponding service time. The process of inter-departure times
{Yn, n = 1,2, . . . } can be described by the following gener-
ative algorithm

Yn =
⎧
⎨

⎩

Un, if
∑n

i=1 Wi ≤ ∑n−1
i=1 Yi,

Un + ∑n
i=1 Wi − ∑n−1

i=1 Yi, otherwise.

Bayesian inference on (θ1, θ2, θ3) was done by assuming
that only the inter-departure times were observed. Because
the inter-arrival times were unobserved, likelihood-based in-
ference would involve high-dimensional integration.

We generated a test data set with n = 50 successive
inter-departure time observation using θ1 = 1, θ2 = 5, and
θ3 = 0.2. We set a uniform prior over [0,10] for θ1, θ2 − θ1,
and for θ3. To investigate the sensitivity of the NCH model
to the number of summary statistics, we ran the ABC-
NCH algorithm using 5, 10 and 20 summary statistics.
Here, the set of summary statistics included the minimum
and the maximum of the inter-departure times and the 3,
8 and 18 equidistant quantiles of the inter-departure times.
We used 10,000 replicates and the tolerance rate was set
to the value Pδ = 50% resulting in a posterior sample of
size 5,000.

Figure 3 shows that posterior distributions of the three
parameters had their mode and median values close to
the ground truth values whatever the number of summary
statistics. This provided evidence that the NCH ABC al-
gorithm was robust to an increase in the dimensionality
of the set of summary statistics. In addition, we found
that the posterior distributions were more concentrated
around the true values when 20 summary statistics were
used.

To investigate the variability of the ABC algorithms from
one run to the other, we ran the LocL, NCH and ANCH
algorithms 100 times on the same data set. We used 2,000
replicates (a rather small number) in order to observed an ex-
aggerated variability, and we varied the tolerance rate from
0 to 1.
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Table 1 The benefit of
adapting the support.
Infinitely-many-sites: Ratios of
variances for the quantiles
estimated after the first NCH
step and the second NCH step of
the ANCH algorithm
(acceptance rate Pδ = 85% in
each step). Expansion model:
Ratios of variances for the
quantiles estimated by the NCH
and the ANCH algorithm (2,000
simulations in each algorithm,
Pδ = 75%). P-values were
computed according to the
F-test

Model parameters Posterior distribution quantiles

2.5% 25% 50% 75% 97.5%

Infinitely-many-sites

Mutation rate θ

Var. ratio 2.75 3.16 3.37 5.46 34.76

P -values 1.27e−06 1.67e−08 1.76e−09 6.88e−15 0

Expansion model

Onset t0

Var. ratio 1.84 2.95 3.69 3.53 2.97

P -values 1.28e−03 8.12e−08 1.74e−10 6.16e−10 6.12e−08

Ancestral pop. size NA

Var. ratio 1.65 3.23 6.83 4.58 3.20

P -values 6.20e−03 7.15e−09 0 2.3e−13 9.34e−09

Ratio of pop. sizes α

Var. ratio 0.09 0.87 3.83 1.97 7.66

P -values 1 0.75 5.89e−11 4.24e−04 0

Fig. 3 The posterior quantiles
of θ1, θ2, and θ3, using the NCH
ABC method, with 5, 10, and 20
summary statistics. The vertical
lines correspond to the true
values of the parameters that
were used when simulating the
data set. The tolerance rate was
set at 50% and a total of 10,000
simulations were performed

Figure 4 displays estimated posterior quantiles for θ3.
The LocL ABC algorithm was the less variable algorithm,
but the posterior credibility intervals produced by this
method were wider than those produced by the NCH and
ANCH algorithms. The latter were less sensitive to the vari-
ation of the tolerance rates, and the medians of the posterior
distributions were closer to the true value in the non-linear
models than in the LocL model. Compared to the NCH al-

gorithm, the ANCH algorithm reduced the variance of the
quantile estimates. We suspect that the variance of the poste-
rior quantile estimates came from the use of local optimiza-
tion during the learning phase of the feed-forward neural
networks. For θ1 and θ2, the credibility intervals obtained
with the NCH and the ANCH algorithms were also typi-
cally tighter than those obtained with the LocL algorithm
(see Supplementary Material).
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Fig. 4 The boxplot of the posterior quantiles for θ3 as a function of the tolerance rate. The different ABC methods were run 100 times each using
2,000 simulations at each run

4 Discussion

Approximate Bayesian computation encompasses a wide
range of useful methods for making inference in implicit
statistical models. In this context rejection algorithms have
greatly benefited from ideas coming from regression-based
conditional density estimation. So far conditional density
estimation in ABC approaches has relied on linear adjust-
ment exclusively (Beaumont et al. 2002). While the linear
regression-based ABC method can approximate posterior
distribution accurately, this is usually achieved at the ex-
pense of a heavy computational load. For example, using
the LocL ABC method for estimating parameter in com-
plex models of modern human expansion, Fagundes et al.
(2007) required an amount of computational time equivalent

to 10 CPU-months. To increase the tolerance of the algo-
rithm, we have proposed to use non-linear regression-based
ABC. In three examples, non-linear neural networks proved
to be able to reduce computational generation costs signifi-
cantly.

An heuristic reason why neural networks worked well
when the number of summary statistics was large is that
their first layer allows for a nonlinear projection onto a sub-
space of much lower dimensionality, and non-linear regres-
sion can then be performed using the reduced number of pro-
jection variables. Increasing the number of summary statis-
tics has a dramatic effect on the variability of the estimators
of the conditional mean m̂(si ) and variance σ̂ 2(si ) and con-
sequently inflates the variances of the estimated posterior
distributions. The variance can be reduced with the Bayesian
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predictive approach of Ripley (1996) that consists of train-
ing a large number of FFNNs for each conditional regression
and averaging the results over the replicate networks. In ad-
dition Bayesian neural network theory includes general rules
for choosing appropriate regularization parameters which
makes the method rather automatic. Compared to other re-
gression models, neural networks share many properties of
projection pursuit regression (Friedman and Stuetze 1981),
which may then lead to equivalent performances. As well
SVM have gained increased popularity in machine learn-
ing approaches during the recent years (Vapnik 1998), and
the algorithms described here could be modified to include
SVM regression without change in spirit.

A second justification for using feed-forward neural net-
works is their ability to implement probabilistic outputs,
hence allowing for a unified Bayesian treatment of model
choice. Indeed model choice may be performed by consid-
ering the model itself as an additional parameter to infer.
Beaumont (2008) proposed to estimate the posterior prob-
ability of each candidate model by an approach based on
a weighted multinomial logistic regression procedure. This
approach is an extension of logistic regression to more than
two categories, and it is equivalent to the use of a multino-
mial loglinear model. As they pertain to a more flexible class
of models, neural networks may achieve equal or better pre-
dictive values than multinomial logistic regression (Ripley
1996).

The ABC approach has been recently used in connected
domains like human population genetics (Pritchard et al.
1999; Fagundes et al. 2007), epidemiology (Tanaka et al.
2006; Toni et al. 2009; Blum and Tran 2008) or for the
evolution of protein networks (Ratmann et al. 2007). It
has also recently been suggested in the context of com-
positional data (Butler and Glasbey 2008), and applied in
extreme value theory (Bortot et al. 2007) and Gibbs ran-
dom fields (Grelaud et al. 2009). Although inference from
synthetic data that mimic observations has a long lasting
record in frequentist statistics (Diggle and Gratton 1984;
Gourieroux et al. 1993), ABC is still in its infancy. Because
the ABC method combines the power of simulating from
stochastic individual-based models with sound methodolog-
ical grounds from Bayesian theory, it has the potential to
open doors to inference in many complex models in ecol-
ogy, evolution, and epidemiology, or other domains like the
social science. Improved statistical ABC models, like those
presented in this study, will then be useful to deal with in-
creased model complexity, and with the need to raise the
dimension of the vector of summary statistics. An R code
for performing ABC with the NCH model is available at the
authors’ website.
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