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Abstract. This article proposes improved numerical
procedures for estimating parameters in a spatiotempo-
ral lattice model introduced for the analysis of cortical
activities monitored from arrays of diodes. The numer-
ical algorithms are based on approximations inspired by
statistical physics. Both Gibbsian and mean-field
approximations are used; they allow for computing
local conditional probabilities inside the lattice. The
statistical procedures rely on the computation of
pseudomaximume-likelihood estimators. The estimators
are evaluated on the basis of Monte Carlo simulations.
These simulations show that mean-field approximations
are useful for reducing the variance of estimators when
the data are recorded from arrays of 144 diodes (which
are in accordance with standard practice). In light of
these improved methods, we give new interpretations
for a data set obtained from optical recording of a
Guinea pig’s auditory cortex in response to pure tone
stimulations.
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1 Introduction

Today several instrumentation techniques enable the
recording of electrical activities inside the cortex during
in vivo experiments using arrays of diodes (Grinvald
et al. 1999; Stieglitz and Meyer 1999; Meyer et al. 2000;
Takahashi et al. 2000). These techniques provide
spatiotemporal data that are invaluable to the study of
sensory information processing mechanisms inside the
brain.
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Data provided by arrays of diodes are multidimen-
sional. They contain endogenous randomness and ex-
hibit spatiotemporal patterns that are supposed to reflect
functional interactions between neurons or neuronal
populations. Devising statistical methods to improve
quantification and characterization of interactions is
therefore a challenging issue.

In the late 1960s, Perkel et al. (1967) proposed a
stochastic approach to the analysis of multiple spike
trains based on point processes and crosscorrelation
methods. Unfortunately, computing crosscorrelation
statistics turns out to be difficult as the number of
simultaneously recorded signals increases. As a conse-
quence, this method is usually precluded in real-time
processing of multidimensional recording. Following the
pioneering approach of Little (1974), several statistical
models of elementary interacting subcomponents in-
spired from those existing in statistical physics were
introduced (Hervé et al. 1990; Martignon et al. 1995;
Makarenko et al. 1997). Within this framework, multi-
electrode neuronal data were usually processed using
Ising spin-like models. Yet computationally intensive
Markov chain Monte Carlo methods are often necessary
in order to implement these inference procedures. In
addition, the resulting statistics may be difficult to
interpret, as the meaning of the estimated parameters is
not always clear from a biological point of view.

Recently, a different approach has been proposed by
Francois et al. (2000). This approach is based on a
model of interacting point processes, called the diffusion
model, for which the parameters can be interpreted as
frequencies of activation events. The data are assumed
to be encoded as binary variables corresponding to the
activities of populations of neurons (processing units)
observed at the nodes of a two-dimensional grid.
According to this model, the processing units become
active according to some Poisson process (the innova-
tion process). Activities at a given site may therefore
diffuse and activate neighboring units according to a
second Poisson process (the diffusion process).

Among the recent techniques, one of the most
promising is optical recording wusing fluorescent



voltage-sensitive dyes. This technique consists of mea-
surements of the emitted fluorescence changes related to
the membrane potential fluctuations by means of an
array of photodetectors. It enables in vivo observation
of neural activities with high spatiotemporal resolutions.
Since the measured signals mainly reflect the dendritic
activities (Grinvald et al. 1988; Orback et al. 1996),
this technique helps visualizing diffusions of synaptic
potentials. However, the innovation process is usually
extremely difficult to infer. In addition, even if one uses
high resolutions, an intrinsic mixing of afferent and
efferent activities is inevitable and makes difficult the
direct interpretation of optical signals.

The approach developed in this article provides
information about innovation and diffusion rates using
the spatial distributions of activities at each instant of
measure. The article is organized as follows. Section 2
describes the diffusion model mathematically. Section 3
presents improved numerical procedures for parameter
estimation in this model. In the algorithms, Gibbsian
approximations are performed at different stages of the
computation of a pseudomaximum-likelihood estima-
tor. The original method developed by Francois et al.
(2000) was based on an indirect mean-field Gibbsian
approximation (IMFGA). The new methods exploit the
same idea in a more direct fashion and relax the
assumption of pairwise interactions within the studied
network. Numerical experiments based on simulations
are reported in Sect. 4. In Sect. 5, we discuss a bio-
logical application. In a series of experiments held in
Japan, Horikawa et al. (1996) collected in vivo optical
recording of the Guinea pig’s auditory cortex. They
visualized the cortical excitatory and inhibitory func-
tional organization of the focused area and studied the
synaptic mechanisms. A subset of their data is used as
an illustration of the way in which these statistical
methods can be applied to a specific biological context.

2 The diffusion model

This section gives a mathematical description of the
diffusion model as a model of interacting point pro-
cesses. A set of n recording sites or diodes is denoted by
S and is endowed with a lattice structure in two
dimensions. For experimentalists, this array is usually
regular, and n =12 x 12 = 144 is a typical number of
recording sites. The neighborhood of a site i is the subset
N; of its four nearest sites.

Assume that n-dimensional binary matrices are re-
corded at each instant ¢ according to a given sampling
period and stored in a format similar to Table 1 of
Francois et al. (2000) (p. 1834). Time is usually mea-
sured in milliseconds. The matrices are reindexed as
configurations

X = (xl,xz, sy X1 X X 1y - ,Xn) s

that are viewed as realizations of Markovian spatiotem-
poral stochastic processes. Let (X;) denote a sequence of
such configurations. In a small interval of time d¢, we

171

assume that at most a single site i changes its value. The
resulting configuration is denoted as

i
X = (x17x27" Sy Xi—1s 1 _xivxi+l7"'7xn) .

In the diffusion model, the probability of modifying the
site i is computed as follows:

P(Xear = x' | Xi = x) = q(x,x)dt + o(d1) (1)

The transition rates g(x,x’) depend on three parameters
A, u, and 6. We assume that

; b if
q(x,x) = ﬂ—l—,LD_C, if

X; — 1
X = 0 s (2)
where x; = %ZjeN,- x; is the local field at site i.

The three quantities A, y, 0 are unknown parameters
that vary with time. The parameter A can be interpreted as
the rate of arrival of external events (that typically consist
of spikes or groups of spikes) according to some Poisson
process. These external events generate activities in pas-
sive sites that become active. Then an active site may
diffuse its activity toward a randomly chosen neighboring
site at rate p. The parameter u encodes the intensity of
such events. Finally, the duration of the activity in each
site is an exponentially distributed random variable of
mean 1/9. Since the parameter 6 can easily be estimated
from the data, this study focuses on the estimation of A4
and u, and we denote the relationship as

0= (A .

3 Methods

This section presents four methods for estimating 0 in
the diffusion model. The first three methods are based on
a pseudomaximume-likelihood approach and use Gibb-
sian approximations (GA). The last method is equiva-
lent to a method of moments.

3.1 Pseudolikelihood

Owing to Besag (1974), the pseudolikelihood (PL) has
become popular in estimating parameters for spatial
binary models. Given the observation x, the pseudolike-
lihood method wusually consists of maximizing the
function defined as

PL(Q):HP()GZXHX_/:X_/a J EN;;0) (3)
i1

Let u;(0) denote the conditional probability for a site to
be active given the states of its neighbors:

ui(0) =PX; =1]X;=x;, j€N;0)

Then, the PL function can be written as

PL(O) = T [us0)" (1 — w(0))' ™
i=1
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3.2 Gibbsian approximations (GA)

Regarding the diffusion model, computing likelihoods
or pseudolikelihoods is hardly feasible because the
stationary distribution is not known analytically, and
even the conditional probabilities u;(0) cannot be
written explicitly.

Since no closed formulae are available, we use
approximations. A first assumption is that the stationary
distribution is a Markov Random Field (or Gibbsian
distribution). We find the approximating distribution by
supposing that the model is time-reversible. For time-
reversible Markov processes, the transition rates and the
stationary distribution 75(x) can be related as follows:

q(x, x)ms(x) = g(x', x)ms(x"), i€S 4)

According to Liggett (1985), this amounts to considering
that the stationary distribution 7,(x) is indeed Gibbsian.

Equation 4 allows computing the local conditional
probabilities given the neighborhood. More specifically,
we have

ES(xi|xjﬂj EN;) =

7x)
200x) T g (5)

and thus
A+ ux;

(0) 7k —————— 6
ui(0) O+ A+ ux; (6)
Finding the value 6 that maximizes the log criterion
£(0) = log PL(0)
can be achieved from a standard iterative procedure
Op1 = 0; — H’I(Qk)VK(HkL k>0 (7)

where 0 = (A, ;) is the parameter at step k. Mathe-
matical expressions for the gradient operator V and the
Hessian matrix H can be obtained from routine
differential calculus.

3.3 Mean-field Gibbsian approximations (MFGA)

The second kind of approximation used in this work is
called the mean-field approximation and is frequent in
statistical physics. It assumes long-range weak connec-
tions and small correlations between sites inside the
network. It is relevant here because the topology of
interactions is usually unknown. Let us recall how this
approximation applies. Francois et al. (2000) showed
that

At (84 4~ wEx] — uElix] =0, j €N, (8)

Estimating the expectation E[x;] by the empirical value

1 n
u= ; E Xi (9)
i=1

and using the mean-field approximation
Efx] ~ @ (10)
we obtain the so-called mean-field equation

I+ (04— wa— =0 . (11)

The Mean-Field Gibbsian approximation (MFGA)
estimation method is also based on the maximization
of the pseudolikelihood criterion ¢(0). The maximiza-
tion is now performed under the mean-field constraint
equation (Eq. 11). Using the mean-field constraint has
the effect of linking A to u. Then a new criterion can be
written in terms of a single parameter (we use u) as
follows:

EWF=§:f%G§%+um—ﬁ0

n 5ﬁ
~Slog( 6+ 4 u(x —@
3 og( +1_ﬁ+u(x u))

Again this criterion can be optimized using standard
differential calculus and second-order procedures.

3.4 Indirect mean-field Gibbsian approximations
(IMFGA)

The Indirect Mean-field Gibbsian approximation method
introduced in Francois et al. (2000) required two steps. In
the first step, it estimated the pseudomaximum likelihood
parameters of the Ising model (the inverse temperature
and the external field). Then it used mean-field approx-
imations for finding the parameters A and pu of the
diffusion model from those of the Ising model. In
contrast, the GA and MFGA methods compute the
pseudolikelihood and the Gibbsian approximation at the
same time.

The fundamental difference between IMFGA and
GA/MFGA comes from the unknown order of the
interactions present in the data. The pseudomaximum-
likelihood method is strongly influenced by the assump-
tions made about these interactions. Because IMFGA is
based on the Ising model, single-site and pair interactions
prevail in this method. GA and MFGA make fewer
assumptions about the true order of the interactions.
Because mean-field statistics do not take the topology
into account, the mean-field constraint plays the role of a
regularizer with respect to the dependencies inside the
array.

3.5 Moment method

In this section, we adopt an approach developed by
Baddeley (1995) in a more general framework. Let ¢ be
any test function defined on the set of configurations
{0,1}°. The generator of the Markov process is the
operator Q built as follows
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Qp(x) =Y qlx,x) () — d(x), xe{0,1}° . (12)

i=1

Under stationarity, the theory of Markov processes tells
that

E[Q¢p(x)] =0 (13)

The idea developed by Baddeley (1995) is that clever
choices of the test function ¢ can provide valuable
methods for estimating the parameters of Q. This would
be achieved by solving the unbiased equation

Qp(x) = 0 (14)

Baddeley (1995) uses this approach for estimating the
parameters of a general probability distribution P. The
method builds a Markov process that converges on P
and then solves the unbiased equation. Clearly, the
choice of ¢ is critical to the quality of the estimators.
When P is a Gibbsian distribution, a natural choice for
¢ is the Hamiltonian associated with this distribution,
and the approach coincides with the pseudolikelihood
method.

In the present work, a specific couple of test functions
¢, and ¢, is utilized. These two functions are defined as
the empirical spatial moments of order one and two.
More specifically, we have

d’l(x):’j:;i:l X (15)
and
b (x) :f:% n XX (16)

According to Eq. 14, estimators of 6 are obtained by
solving a linear system

A0T =B (17)
where A is the square matrix defined as
A=

1—=¢;(x)

2(1(x) = $(x))

¢y (x) — Ps(x)
kl—ﬂﬁ?HWXXl—Mﬁﬂ4/n

jeny
(18)

M-

and B is the vector

o (x
B= 5( 1) (19)
2¢,(x)
With ¢, and ¢,, the generator method coincides with the
method of moments (MM) where the expected values

Efx;] and E[x;x;] are replaced by their empirical values in
equation
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22Ep] — 2(0 4+ A)Epeix;] + 2uEx; (1 —x;)x;] =0 . (20)

4 Validation of methods

This section reports experimental comparisons based on
Monte Carlo simulations of the diffusion process.

4.1 Experimental design

In order to assess the statistical performances of the
four estimators GA, MFGA, IMFGA, and MM, arrays
of 30 x 30 =900 sites have been simulated. As this
number is not yet realistic with respect to experiments,
arrays of 12 x 12 sites have been considered as well. One
hundred Monte Carlo simulations have been run for
each value of 4 and u starting from 0.0 to 2.0 according
to a grid of mesh 2 = 0.05 (40,000 runs in all). Monte
Carlo simulations were stopped when the equilibrium of
the diffusion model was attained. Numerical maximiza-
tion algorithms were stopped when the norm of the
gradient was lower than 1.0e-4. In this section, the
parameter ¢ is fixed to 6 = 1.0. Since it corresponds to
the unit of time, its value does not influence the other
estimators.

Two measures of performance are used. The first one
is the mean square error (MSE), which is a standard
measure in statistics. The MSE can be computed as

MSE(i, 1) = 3 [0 = % + (s — 0], ¥ = 100
k=1

where A, and i, represent the Monte Carlo estimates
after the kth simulation. The second measure is called
the rate of success and corresponds to the ratio of
simulation runs for which the numerical procedure has
converged.

4.2 Results

This section presents comparison results of the four
estimation procedures. Recall that MFGA and IM-
FGA use mean-field approximations, whereas GA and
MM do not. Figures 1-3 display the performances of
Gibbsian approximation methods (GA, MFGA, and
IMFGA) for 12 x 12 lattices (up) and 30 x 30 lattices
(down). The results are presented as intensity maps
that correspond to the levels of errors (left) and the
rates of success of the numerical solver (right). Dark
parameter areas indicate high statistical errors (MSEs
increase from white to black). The rates of success
range from less than 5% (black) to more than 95%
(pale gray).

For 30 x 30 arrays, MSEs took similar values in all
the Gibbsian approximation methods. Correct results
are obtained except for parameters at the top corners in
the figures. Because the top right corner corresponds to
high values of mean activities, reliable estimates cannot
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Fig. 1. Mean square errors (left)
and rates of success (right) of
the Gibbsian approximation

method for lattices of 144 sites
(top) and 900 sites (bottom)
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2 Fig. 2. Mean square errors (lef?)
and rates of success (right) of
the MFGA method for lattices of

8C
6L
4t
2C

be obtained in this area (simulated binary patterns are
almost saturated by 1s). The top left corner (1 < 1 and
u > 1.5) corresponds to spatial covariances

that are large in absolute values (|c| > 0.05). In this area,
the bias grows in both MFGA and IMFGA because
mean-field approximations become erroneous. Overall,
GA obtains the best rates of success and the smallest
MSEs and can be considered as the best method for
large arrays.

144 sites (top) and 900 sites
% (bottom)

Figure 4 displays the performances of MM for
30 x 30 lattices. It also displays the value of the
determinant of the linear system (Eq. 17). Small values
of this determinant can be observed around a line of
equation p = 3 — 2/, and this shows that the method is
unstable. MM appears to be correct for small values of 4
and u (4 < 0.5 and pu < 1.0). However the quality of the
estimators decreases significantly for 4 > 1, and MM is
globally beyond the other methods.

Regarding 12 x 12 lattices, the method that war-
rants the smallest MSEs and the highest rates of
success is MFGA. (Because the performances were
poor compared to the other methods, results of MM
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Fig. 3. Mean square errors (left)
and rates of success (right) of the

20

n

05 20

05 1.0 1.5 20

Fig. 4. Mean square errors (fop) and determinants of the generator
method (MM) with 30 x 30 sites

for 12 x 12 lattices were not presented). Surprisingly,
IMFGA seems more reliable than GA. The rates of
success are greater than 80% almost everywhere. This
result is in favor of the mean-field approximation. It
underlines that adding a mean-field constraint to the
maximization procedure also regularizes the numerical
algorithms. In addition, the biases introduced by these
approximations are actually counterbalanced by sig-
nificant gains in variances. To conclude, MFGA
should be preferred as long as small arrays are used
and small spatial covariances can be observed
(|e] < 0.05).

IMFGA method for lattices of
144 sites (top) and 900 sites
A (bottom)

5 Biological data

As an illustration of the way in which our statistical
procedures can help analyze biological data, we reex-
amine a previously studied data set representing the
electrical activity of the Guinea pig’s auditory cortex
(AC) in response to pure tone stimuli (Francois et al.
(2000)). The format of data includes the preprocessing
and the normalization of raw signals converted into
binary data. Although these important steps may
condition the interpretation of results, we assume that
using binary variables instead of continuous signal
variables helps in the understanding of qualitative
behaviors and the spatial distribution of neural activi-
ties. We hence assume that such qualitative behaviors
are correctly captured by the binary data.

During the experiment fluorescent signals emitted by
the AC were monitored using a 12 x 12-channel pho-
todiode array at a rate of 0.576 ms per frame (VSD
optical imaging). The cortical recording area was 3 mm
x 3 mm covering part of both the anterior (A, including
the primary AC) and dorsocaudal (DC) fields. The
measuring microscope was focused 200 m below the
surface of the AC (layers II/I1I). After contralateral ear
stimulation with pure tones, transient excitatory re-
sponses followed by a long hyperpolarization were ob-
served in fields A and DC. The raw data were converted
into a sequence of 40 configurations. Further details
about how the optical data were recorded can be found
in Horikawa et al. (1996). The binary configurations
have been processed using IMFGA by Francois et al.
(2000).

Organization of the monitored area The AC is organized
in column-shaped units that correspond to afferent
thalamocortical and corticocortical projections and map
sensory events onto the cortex. Columns are formed
by many minicolumns linked together by horizontal
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Fig. 5. Mean activities (left) and
spatial covariances (right) esti-
mated from the experimental
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dataset. The sampling period is
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Fig. 6. Parameters 4 (left) and
u (right) estimated from the

intracortical connections. Minicolumns have been iden-
tified as the basic ontogenetic information-processing
units of the neocortex (Mountcastle 1997). In general,
bundles of thalamic axons arriving at the cortex
terminate in focal clusters situated in layers III and IV
(Rockland 1998). In addition, evidence of a vertical flow
of electrical activity from infragranular layers (V-VI) to
supragranular layers (II-11I) and of a horizontal diffu-
sion at supragranular and infragranular layers has been
obtained from neocortical slices (Kohn et al. 1997,
Kubota et al. 1997; Kohn et al. 2000): neural activities
propagate radially to superficial layers within columns
and follow a minicolumn-related pattern dependent on
the stimulus. Finally, distant functional cortical regions
seem to be bounded by collateral axons from pyramidal
neurons from layers I1I and V. These collateral axons run
several millimeters joining cortical columns with similar
functional properties (Ojima et al. 1991; Read et al. 2001).

Biological assumptions Optical recording techniques
enable the study of in vivo cortical activities at mesoscopic
scales below the cortical column size (300 pm) and even
at minicolumnar scales (50 pm). Each site records the
simultaneous activities of several minicolumns that may
be part of different columns.

Our analysis will be based on the following assump-
tions. (1) Clusters of minicolumns are modular and
interactive. At the fine mesoscopic scale, we assume
diversity of neural responses among the modules. One
can expect a relative homogeneity of receptive field
properties at adjacent detectors but heterogeneity at
distant detectors. (2) Fluctuations of electrical activities
at this scale are supposed to reflect the coherent activities

experimental data set using the
o MFGA method

of local populations of neurons coding for specific
combinations of stimuli features and receptive field
properties. They are expected to exhibit complex wave-
forms due to nonlinear excitatory and inhibitory inter-
actions within and among local minicolumns and are
modulated by other activities (distant minicolumns,
subcortical structures) (3) Most fluctuations contribut-
ing to VSDOI signals have their origin in excitatory
synaptic activity occurring at the supragranular layers I1
and III. The observed signals are superpositions of
afferent and intracortical activities (La Rota 2003).

Description of results Figure 5 displays the mean activ-
ities and the empirical spatial covariances measured
from the binary data. Mean activities increase from 0%
to 40%, reach a peak after 30 ms, and then decrease to 0.
The spatial covariances are positive. Figure 6 displays
the parameters 4 and u estimated thanks to the MFGA
method. The shape of u coincides with the shape of the
spatial covariances. It indicates that this parameter
actually measures a second-order interaction. In con-
trast, the shape of A obtained with MFGA is different
from the estimation obtained with IMFGA for which
two ‘“‘negative peaks” have been obtained. These
negative peaks should be mostly considered as numerical
artifacts.

6 Discussion

Previous studies of the fields A and DC of the Guinea-
pig’s AC in response to pure tones have revealed the
existence of dynamical spatiotemporal patterns coding



for frequencies and intensities of sensory stimuli. These
tonotopical patterns result from an asymmetrical spread
of excitation in each field. They are shaped by the
balance of excitatory postsynaptic activities mediated by
the activation of both NMDA and non-NMDA recep-
tors and inhibitory activities mediated by GABA
receptors. They are also modulated by other sources
such as the cholinergic system and the input activity
from other cortical areas (Horikawa et al. 1996;
Taniguchi et al. 1992; Taniguchi and Nasu 1993).

Horikawa et al. (1996) have shown the existence of
excitatory responses mediated by non-NMDA receptors
and have described their dynamics. These responses are
localized in time and space. They start at focal points
and diffuse along isofrequency bands in the rostrocaudal
to ventrocaudal direction. These responses are followed
after 10 ms by second ones, which last longer and have a
larger amplitude but which are cancelled by a simulta-
neous GABAergic inhibition. Under normal conditions,
the excitatory responses last 40—50 ms starting 17-20 ms
after the stimulus onset. NMDA-receptor-mediated
and GABAR responses start at 27-30 ms, i.e., 10 ms
after the beginning of non-NMDA-receptor-mediated
responses.

In this study, the curve of the spatial covariances
suggests that the interactions between adjacent sites in
the Guinea pig’s AC are globally excitatory. For binary
variables, positive spatial covariances actually indicate
that the probability of coactivity at neighboring sites is
greater than the value that would be obtained from
independent superpositions of activities. We observe
that the shape of covariances is closely related to the
shape of the diffusion parameter u. This result was ex-
pected and confirms the pairwise nature of interactions.

Direct measurements of input signals arriving at
layers II-1II of the AC are hardly feasible. Nevertheless,
these input signals have their reflection in the parameter
A. The shape of the A curve confirms the hypothesis that
most inputs arriving at layers II-I1T are excitatory. The
first peak of 4 is correlated with the instants of arrival of
afferent spikes from the MGB 14 ms after the stimula-
tion (Rutkowski et al. (2000)) and coincides with the
onset of the optical responses after 20 ms (Horikawa et
al. 1996). The latency of the first peak of u is correlated
with the latency of GABAergic inhibition after 27 ms
(Horikawa et al. 1996). These peaks are followed by
oscillations of both 4 and u. The period of the oscillation
is about 10 to 15 ms.

According to Mountcastle (1997), there are excit-
atory synaptic activities imposed via exhuberant
recurrent collateral branches of pyramidal cell stem
axons. These reentrant circuits create a bidirectional
excitatory system: pyramidal cells of the supragranular
layers innervate pyramidal cells of the infragranular
layers and vice versa. In addition to this circuitry,
pyramidal cells receive local inhibitory inputs from
GABAergic interneurons. These interneurons receive
the same afferent activities as the pyramidal cells
(Horikawa et al. 1996; Metherate 1998). Therefore, the
observed oscillations could result from the positive
feedback between infragranular and supragranular
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layers. In addition, the duration of the GABAergic
inhibition could be responsible for the distance between
the two peaks.

The above conjectures must be weighted by the
following facts. (1) The analysis might be sensitive to
the preprocessing of continuous signals. (2) The signals
have been obtained with the RH795 fluorescent dye,
which is contaminated by a large amount of noise. (3)
The nature and the intensity of anaesthesia (barbitu-
rates) may condition the results of the experiments. The
interpretation of data needs more evidence under dif-
ferent experimental conditions, e.g., awake animals (La
Rota 2003). (4) We assume homogeneous structures. In
the primary AC, the modules follow a band pattern
arrangement related to sound frequencies (isofrequency
band). In addition, there is a single tonotopic map in
the medial geniculate ventral nucleus, which splits when
projected onto the cortex in the two adjacent tonotopic
fields A and DC (Redies et al. 1989a, b). The A and
DC areas of the AC cannot be considered as fully
homogeneous.

Nevertheless, we believe that binary variables are able
to capture the rough patterns of spatiotemporal infor-
mation inside the cortex and that such data are robust in
this respect. Continuous variables might be useful for
detecting further details of temporal activities. However,
their analysis remains difficult at this time. The above
data set from the guinea pig’s AC is a typical example of
how spatial statistical methods could be applied in
processing complex neural signals.
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