
SM3 – Simulation Study of Genome Scans for Selection (FDR
and Power)

We applied FDR control algorithms to three model-free hypothesis testing approaches to evaluate

the sensitivity of methods to false discoveries in data sets simulated for discrete and continuous

populations. The 3 methods included FST outlier approaches, linear and logistic regression models

and latent factor models.

Discrete population simulations. To evaluate correction/calibration methods in genome

scans based on population differentiation measures, we used the computer program ms to per-

form coalescent simulations of neutral and outlier SNP loci for discrete populations in 2-island

models (Hudson, 2002). The justification for the use of Wright’s island models is that loci with

selection coefficient s, have an effectively reduced migration rate, ms, which could be interpreted as

evidence of divergent selection (Bazin et al. 2010). Simulated data sets included diploid individual

genotypes for 100 samples from each island. Individual genotypes consisted of 1,000 SNPs, and

the proportion of loci under selection was set to 10%. We used 3 values of the effective migration

rate 4Nm = 5, 10, 20 to simulate varying levels of neutral divergence. Outlier loci were generated

using the values 4Nms = .1 and .5.

Continuous population simulations. We simulated 165 genotypes from populations that

underwent a demographic range expansion 1,000 generations ago using the program SPLATCHE

(Currat et al. 2004). The simulations implemented a non-equilibrium stepping-stone model based

on a rectangular array of demes that was colonized from a geographic origin located south of

the area. For each deme, the migration rate was equal to m = .4, the expansion rate was equal

to r = .4, and the carrying capacity was equal to C = 100. We simulated genetic variation at

1,000 SNPs with 10% outlier loci, and we sampled one diploid individual from each deme. To

simulate genetic variation at adaptive loci, we created artificial ecological gradients as described

in (Frichot et al. 2015a). A reference ecological gradient was defined to be parallel to the main

axis of expansion. Considering 17 distinct angles ranging from -90 to +90 degrees, the gradient
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directions were rotated by angles of 11.25 degrees from their previous position. Using the Haldane

transform, we reproduced clinal allele frequency patterns as expected under spatially varying

selection intensities at 100 loci (Haldane 1948). Those data consisted of subsamples from the

simulated data used in (Frichot et al. 2015a), where a full description of the simulation design is

provided.

Estimation algorithms. In our analyses, we used the R functions lm (ANOVA), glm the base

package and the function lfmm from the package LEA to estimate regression coefficients, z-scores

and p-values for locus-specific effects (Frichot et al. 2015b). Considering squared z-scores, p-values

were obtained from chi-square distributions with one degree of freedom. This value corresponded

to the fact that 2 populations were used in PD methods, and that a single ecological variable was

used in EA methods. Linear model and generalized linear model results were similar and reported

under the term linear model.

In implementing lfmm, the Markov chain Monte Carlo procedure was executed five times using

run-lengths of 10,000 cycles and burn-in periods of 5,000 cycles in each run. The resulting z-

scores were then combined using a robust variant of the Stouffer method (Brown 1975, Whitlock

2005, see Text). For each locus, we computed the median values of z2 scores, and corrected this

statistic using the genomic inflation factor. We chose the number of factor corresponding to the

best estimate of the number of cluster from the sNMF ancestry estimation program (Frichot et al.

2014), and displayed the histogram of the p-values for graphical checks. For PD methods using

LFMM, the degrees of freedom were set to d = K − 1 where K is the number of genetic cluster

estimated from the data (d = 1).

FDR and power study. For ANOVA, linear regression models and LFMM, we produced lists of

candidate loci based on the FDR control algorithm (Benjamini and Hochberg 1995). In ANOVA

and generalized linear regression models, we observed that the classical method for computing

the genomic inflation factor, λ, as the median of z-scores divided by 0.456 was unpractical, and

led to tests lacking power to detect selection. For each simulated data set, we optimized λ so

that observed FDRs were close to their expected values. This procedure, which is based on the
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Figure 1: Population differentiation tests. FDR control in a particular simulated example
data set (4mN = 10, 4msN = .1). A) Histogram of corrected test p-values in linear models
(optimal correction). B) Histogram of corrected test p-values in latent factor models (K = 1). C)
Observed FDR as a function of their expected levels for the optimal linear model and for LFMM.
D) Power as a function of expected FDR levels.

inspection of candidates obtained by the Benjamini-Hochberg algorithm and the evaluation of

the number of adaptive loci among the candidates, provides an optimal control of the FDR in

linear models. The resulting tests were termed adjusted linear model tests. This procedure is not

applicable to real cases, because it assumes that the lists of truly selectively neutral and adaptive

loci are known. Here this approach was used to obtain an empirical bound on the power of

methods to detect selection. Better approximations of λ than the genomic inflation factor could

be obtained by using graphical methods based on histograms of p-values or on the application of

local FDR and empirical-null testing methods to z-scores. For LFMM, we followed the approach

described in the documentation of the LEA package, and described in the previous paragraph.

We eventually evaluated the sensitivity (power) of each method by computing the proportion of

loci with positive tests among the list of truly adaptive loci.
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Figure 2: Population differentiation tests (All data sets). Relative performances of latent
factor models and optimally adjusted linear models. A) Observed FDRs. B) Power. These values
corresponded to expected FDR levels between 0.01 and 0.3. Optimal test corrections in linear
models used the list of truly adaptive loci.

Results for discrete population simulations. To evaluate the performances of LFMM and

optimally tuned ANOVA tests, we first compared the observed levels of FDR to their expected

levels using simulations of discrete populations. Corrected ANOVA tests used inflation factors

that were optimized to produce the best match to their expected levels of FDR (Figure 1C),

which resulted in a flat histogram for test p-values (Figure 1A). Without optimization, latent

factor models exhibited levels of observed FDR close to the values observed for optimally adjusted

linear models (Figure 2A). The results show that latent factor models, which do not compute any

direct measures of population differentiation, can automatically correct for the inflation of test

statistics due to population structure (Figure 1C and Figure 2A). Next, we compared the power of

linear and latent factor models to detect outlier loci. Latent factor models exhibited performances

that were close to those of optimally adjusted population differentiation methods (Figure 2B and

Figure 1D). Power was generally higher for lower values of the ratio ms/m, corresponding to higher

relative levels of selection intensity. Overall, those results provide evidence that EA methods can

reach quasi-optimal performances when they are used to perform population differentiation tests
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Figure 3: Genomic inflation factors over-estimated optimal inflation factors in linear
models. Genomic inflation factors for 17 simulated continuous population genetic data sets (red
curve). Optimal correction factors for the same data sets (blue curve). Optimal correction factors
assumed that the list of truly adaptive loci was available.

in genome scans for selection.

Results for continuous population simulations. In a second series of simulations, we in-

vestigated FDR control for linear and latent factor models in the case of spatially continuous

populations and association with environmental gradients. For linear models, the genomic infla-

tion factor over-estimated inflation due to population structure, and led to overly conservative

tests. Values of inflation factors for which tests matched their expected FDR levels were about

two-fold lower than values computed by genomic inflation factors (Figure 3). Latent factor models

exhibited levels of observed FDR close to the values observed for optimally adjusted linear models,

and the LFMM tests had power close to optimally adjusted linear model tests (Figure 4). Figure

5 provides evidence of FDR control in linear and latent factor models for one particular data set.
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Figure 4: Continuous population models and association tests: Relative performances of latent
factor models and optimally adjusted linear models. A) Observed FDRs. B) Power. These values
correspond to expected values of FDRs between 0.01 and 0.3. Optimal test corrections in linear
models made use of the list of truly adaptive loci.
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Figure 5: Continuous population models and association tests: FDR control in a particular sim-
ulated example data set (angle of 45 degrees). A) Histogram of corrected test p-values in linear
models. B) Histogram of corrected test p-values in latent factor models (K = 6). C) Observed
FDR as a function of their expected values. D) Power as a function of expected FDR values.
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