
Invited Review paper

Title: Spatially Explicit Bayesian Clustering Models in Population Genetics

Authors: Olivier François* and Eric Durand*

Affiliation: *Grenoble IT,  Université Joseph Fourier Grenoble, CNRS UMR 5525, TIMC-IMAG, 

Group of Computational and Mathematical Biology.

 

Corresponding author: Olivier François

Address: TIMC-IMAG, Group of Computational and Mathematical Biology, Faculty of Medicine, 

38706 La Tronche France.

Tel: +33 (0)456 520 025

Fax:+33 (0)456 520 044 

email: olivier.francois@imag.fr



Abstract: Geographic patterns of intraspecific genetic variation are central to many fields of 

evolutionary biology, molecular ecology, conservation biology and population genetics. This study 

reviews recent developments in Bayesian algorithms that explicitly include geographical 

information in the inference of population structure. Current models substantially differ in their 

prior distributions and background assumptions, falling into two broad categories: with or without 

admixture. In order to aid users of spatially explicit programs, we clarify the assumptions 

underlying the models, and we test these models in situations where their assumptions are not met. 

We show that models without admixture are not robust to the inclusion of admixed individuals in 

the sample, thus providing incorrect assessmnent of population genetic structure in many generic 

cases. In contrast, admixture models are robust to an absence of admixture in the sample. We also 

give statistical and conceptual reasons why spatially explicit models of admixture should used in 

addition to models without admixture. 

Keywords:  Spatial population structure  – Spatial clustering models – Admixture – Software 

packages  



Introduction

Statistical methods that can describe and quantify geographic patterns of intraspecific genetic 

variation are essential to many researchers (Endler 1977, Cavalli-Sforza et al 1994, Avise 2000). 

Inference about population genetic structure started around the 1960's with principal component 

analysis (PCA) and tree-based clustering algorithms (Cavalli-Sforza and Edwards 1965; Edwards 

and Cavalli-Sforza 1964). Those algorithms are descriptive methods making no assumptions about 

the biological processes that generated the data. Since the early epoch, the Bayesian revolution that 

occurred in population genetics has changed our ways to make such inferences (Beaumont and 

Rannala 2004). The Bayesian paradigm has fostered the emergence of several new model-based 

parametric methods, the most representative of which being implemented in the computer program 

STRUCTURE (Pritchard et al 2000). STRUCTURE uses multilocus genotype data to describe 

population genetic structure. The method differs from other statistical procedures for estimating 

genetic subdivision, such as F-statistics or the analysis of molecular variance, that assume 

predefined subpopulations (Wright 1951; Excoffier et al 1992). Instead STRUCTURE assumes that 

there are K (K is unknown) clusters, each of which is characterized by a set of allele frequencies at 

each locus. Since its original publication, many modifications of the original models have been 

proposed. These modifications include the presence of genetic linkage (Falush et al 2003; Hoggart 

et al 2004),  inbreeding (Francois et al 2006; Gao et al 2007),  migration (Zhang 2008), mutation 

(Shringarpure and Xing 2009), allele dominance (Falush et al 2007; see Bonin et al 2007), automate 

the choice of the number of cluster (Dawson and Belkhir 2001; Pella and Matsuda 2006; 

Huelsenbeck and Andolfatto 2007) and speed up the inference algorithm (Corander et al 2003; 

Tang et al 2005; Chen et al 2006; Wu et al 2006; Alexander et al 2009).

An important class of Bayesian clustering models improve STRUCTURE by including 

information on individual geographic coordinates. These models are currently implemented in the 

computer programs GENELAND (Guillot et al 2005), TESS (Chen et al 2007; Durand et al 2009) 

and BAPS5 (Corander et al 2008).  Table 1 summarizes a variety of recent applications of those 

programs  in  molecular ecology, conservation genetics and evolutionary genetics. Although the 

programs are targeted at similar goals, they rely on models that substantially differ in their 

background hypotheses. The objective of this review is to clarify the assumptions underlying 

spatially explicit Bayesian clustering models, to test their robustness to departures from their 

primary assumptions, and to aid users in interpreting their program outputs. 



Table 1. Use of spatial clustering programs in 2008-2009 publications
Reference Taxon Scale Patterns Programs

Garrick et al 2009 Euphorbia lomelii (magnoliopsida) regional clusters geneland

Bizoux et al 2009 Milicia excelsa (magnoliopsida) regional ibd tess

François et al 2008 Arabidopsis thaliana (magnoliopsida) continental cline/clusters tess

Garcia-Gil et al 2009 Pinus sylvestris (pinopsida) local ibd tess (geneclust)

Dvorak  et al 2009 Pinus oocarpa (pinopsida) regional cluster/admixture baps

Lavandero et al 2009 Eriosoma lanigerum (insect) regional clusters structure 
baps 

Orsini et al 2008 Melitaea cinxia (insect) regional clusters baps 

Holzer et al 2009 Formica paralugubris (insect) local clusters structure
geneland

Fuentes-contreiras et al 2008 Cydia pomonella (insect) local clusters/ibd baps

Dépraz et al 2009 Trochulus sericeus/hispidus (gastropod) regional hybrid zone tess

Spear and Storfer 2008 Ascaphus truei (amphibian) regional clusters structure
tess

Richmond et al 2009 Plestiodon reynoldsi  (saurian) regional fragmentation/ibd tess

Dudgeon et al 2009 Stegostoma fasciatum (Chondrichthyes ) regional ibd 
clusters

structure
tess

Galarza et al 2009 Littoral fish species regional clusters geneland

McCairns and Bernatchez 2009 Gasterosteus aculeatus (actinopterygii) regional clusters geneland

Durand et al 2009 Fundulus heteroclitus (actinopterygii) continental Cline
contact zone

structure
tess

Dionne et al  2008 Salmo salar (actinopterygii) regional clusters geneland

Johansson et al 2008 Sebastes caurinus (actinopterygii) local ibd tess

Dupont et al 2008 Styela clava (ascidian) regional dispersal
clusters

structure 
baps 
geneland

Groombridge et al 2009 Falco araea (bird) regional Random mating tess

Fedy et al 2008 Lagopus leucura (bird) regional Clusters structure
tess

Sahlsten et al 2008 Bonasa bonasia (bird) regional secondary contact structure
geneland

Coulon et al 2008 Aphelocoma coerulescens (bird) regional clusters structure
geneland

Lindsay et al 2008 Dendroica chrysoparia (bird) local admixture structure
baps 
tess

Barr et al 2008 Vireo atricapilla (bird) local Admixture
clusters

structure
baps 
tess

Devitt et al 2009 Rangifer tarandus (mammal) regional clusters structure 
tess

Henry et al 2009 Panthera tigris altaica (mammal) regional
continental

clusters
admixture

structure
tess

Cullingham et al 2008 Procyon lotor (mammal) regional clusters 
admixture

structure
tess

Gauffre et al 2008 Microtus arvalis (mammal) local ibd structure
tess
geneland

Braaker and Heckel 2009 Microtus arvalis (mammal) regional clusters structure
geneland

Gardner-Santana et al 2009 Rattus norvegicus (mammal) local clusters
fragmentation

structure
geneland

Echenique-Diaz et al 2009 Hipposideros turpis turpis (mammal) regional admixture tess

Yoshino et al 2008 Rhinolophus cornutus pumilus (mammal) regional admixture structure 
geneland 
tess

Liu et al 2009 Rhinopithecus bieti (mammal) regional clusters 
fragmentation

geneland

Quéméré et al 2009 Propithecus tattersalli (mammal) regional clusters
fragmentation

structure
tess
geneland

Guschanski et al 2008 Gorilla Gorilla (mammal) regional clusters baps

Wang et al 2008 Humans continental clines
clusters

structure
tess

Tishkoff et al 2009 Humans continental clines
clusters

structure 
tess



Population structure and Bayesian clustering 

Genetic structures and spatial scales. Spatially explicit Bayesian models address three major types 

of genetic structures that can appear at possibly different geographical scales: genetic clusters, 

clines, and patterns of isolation-by-distance. Genetic clusters can be viewed as genetically divergent 

groups of individuals that arise when gene flow is impeded by physical or behavioral obstacles.  In 

population genetics, the concept of cline refers to a large-scale spatial trend in the variation of allele 

frequencies or genetic diversity (Hartl and Clark 1997). Clines in allele frequencies may be the 

consequence of adaptation along an environmental gradient (Berry and Kreitman 1993), or of 

genetic admixture occurring in secondary contact zones (Barton and Hewitt 1985). Introduced by 

Wright (1943), isolation-by-distance is the accumulation of local genetic differences under 

geographically restricted dispersal. A classical model of isolation-by-distance is the equilibrium 

stepping-stone model in which regularly spaced subpopulations exchange migrants locally (Malécot 

1948; Kimura and Weiss 1964). The equilibrium model implies a decrease of genetic correlation 

with distance, a phenomenon that also occurs in non-equilibrium populations (Slatkin 1993).  

 Clines, clusters and patterns of isolation-by-distance are not mutually exclusive genetic 

structures. A classic example of co-occurence of these patterns is the internal genetic structure of 

the Yanomama, a tribal population from Venezuela and Northern Brazil (Ward 1972; Ward and Neel 

1976; Smouse and Long 1992). The tribe is hierarchically organized in villages and dialect clusters, 

and several polymorphic loci show clinal variation within the tribe in distinct spatial directions. The 

proposed interpretation of these patterns is that those clines and clusters are the results of 

centrifugal range expansion at an earlier stage of the history of the tribe. Other examples of 

coexistence of the three geographical patterns are for ring species (Irwin 2005). In a ring species, 

two reproductively isolated forms are connected by a chain of intermediate subpopulations that 

encircle a geographic barrier. Isolation-by-distance and selection against hybrids can lead to well-

differentiated genetic clusters that may be separated by a cline at  the closure of the ring (Bensh et 

al 2009). 

Bayesian clustering. One explanation of the great popularity of STRUCTURE in evolutionary 

applications is its ability to provide a description of clines and clusters at the level of each genome. 

Isolation-by-distance may be viewed as an ubiquituous phenomenon that complicates the analysis 

of genetic variation.  Under its generic name, the program includes many distinct models that fall 

into two broad categories: models with or without admixture. The models without admixture 

assume that the sample results of the mixture of K diverging subpopulations. Individuals are then 

probabilistically assigned to the K genetic clusters. Assignment is conducted in order to minimize 

the Wahlund effect, that predicts departures from Hardy-Weinberg and linkage equibrilium caused 



by population substructure. In contrast, the admixture models suppose that the data originate from 

the admixture of K putative parental populations that may be unavailable to the study. The K 

parental population may be ancestral to the sample at unknown times in the past. In these models, 

the parameters of interest are the ancestry coefficients, also termed admixture proportions, 

computed for each individual in the sample. These coefficients are stored in a matrix, Q, which 

elements, qik, represent the proportion of individual i's genome that originates from the parental 

population k. The most often used option of STRUCTURE implements a variant of the admixture 

model with correlated allele frequencies (Falush et al 2003). In addition to enabling inferences of 

population structure, the Q matrix is fundamental for correcting stratification in genome-wide 

association studies, one of its primary target (Pritchard et al 2000). 

More specifically, the models of STRUCTURE describe the joint probability distribution of 

the data (the multilocus genotypes) and the parameters, which include all allele frequencies, latent 

clusters for each individual (without admixture) or allele (with admixture), and admixture 

proportions.  The joint probability distribution decomposes into the product of two terms: the 

likelihood, a quantity that describes the probability of the data conditional on the parameter, and the 

prior distribution which summarizes background information about the parameter. Posterior 

estimates for the parameters of interest are computed by updating the  prior distribution based on 

the data and a Markov chain Monte Carlo (MCMC) algorithm. Spatial explicit programs, that will 

be described below, adopt the same individual-based likelihood framework, but they rely on very 

different priors distributions. 

Spatially explicit Bayesian models

The spatial clustering models fall into the same two categories as those implemented in 

STRUCTURE: with or without admixture.  We present five distinct spatial Bayesian individual-

based clustering models implemented in three software packages.  While this review is focused on 

individual-based methods, we need to mention that population-based methods, based on similar 

Bayesian principles, can also include spatial covariates in their prior distributions (Foll and 

Gaggiotti 2006; Faubet and Gaggiotti 2008). 

Preliminary clarifications. Before describing apparently related Bayesian clustering approaches, it 

is useful to make a number of preliminary remarks that can help to better understand the differences 

between the programs. 1) Each program name hides a plethora of distinct models. For example, 

STRUCTURE encompasses (much) more than 16 different models depending on the choice of the 

admixture model (Pritchard et al 2000), the linkage model (Falush et al 2003), the dominance model 

(Falush et al 2007) or the use of population information (Hubisz et al 2009). This means that we 



should clearly indicate which model we use in addition to which program we use. Here, unless 

mentioned, we refer to the default options of each program.  2) A second distinction is between 

models and their computer implementation. Computer implementations are often changing, and the 

changes generally lead to upgraded versions of programs and program documentations. Because of 

the accelerated process of successive releases, comparisons of programs are only valid on short time 

scales, and  references to program documentations may be more accurate than references to original 

publications. Our objective here is not to compare the relative performances of the presented 

models. For such comparisons, see (Latch et al 2006; Chen et al 2007). 3) Some essential post-

processing methods do not belong to the models themselves. For a particular data analysis, 

examples include model selection methods to decide which number of cluster should be retained, 

and utilities that deal with label switching and multimodality issues in averaging results over 

multiple program runs (Jakobsson and Rosenberg 2007). 

Models without admixture. The no-admixture model implemented in BAPS5  defines the 

neighborhood of each individual based on a Voronoi tessellation of the study area (Corander et al 

2008; François et al 2006). In this graphical representation,  pairs of neighbors correspond to two 

adjacent cells centered on sampling sites. BAPS5 models spatial dependencies within the prior 

distribution of individual cluster labels, assuming that this distribution writes as a product of 

functions of particular subgraphs – called cliques and separators. The definition of the model, as a 

prior distribution that puts more weights on geographically homogeneous partitions of the sample, 

is purely statistical and not based on biological considerations. According to its mathematical 

definition, the prior of BAPS5 models the spatial autocorrelation of cluster labels, and the decrease 

of such correlation with distance on theVoronoi tessellation.  The model without admixture is 

implemented through a greedy stochastic split and merge algorithm. The algorithm is faster  and 

requires less tuning than MCMC algorithms (Corander et al 2008). In practice, the only parameter a 

user of BAPS5 can tune is the maximal number of cluster, Kmax, to be explored  by the program. 

In contrast, the prior distribution on cluster labels implemented in GENELAND is based on 

a biologically-motivated probabilistic model inspired by landscape genetics (Manel et al 2003; 

Guillot et al 2005).  GENELAND attempts to detect genetic boundaries, considering that these 

boundaries separate K  random mating subpopulations. Unlike BAPS5, Voronoi cells in 

GENELAND are not associated to individuals, but to "territories". Each territory can group several 

individuals within a single Voronoi cell. The geographic locations of the cells, as well as their 

number are considered as parameters of the model, and are estimated using an MCMC algorithm. 

The number of cells is controlled by a fixed parameter that influences both the posterior estimates 

and the convergence rate of the algorithm.  A distinction between BAPS5 and GENELAND is that 



the model assumes the presence of K Hardy-Weinberg clusters in the sample. It differsfrom the 

other models which make no such assumptions, and instead attempt to minimize the Walhund effect 

by including possible statistical sources of departure in their prior distributions. To make inferences, 

GENELAND implements a Reversible Jump MCMC algorithm visiting all values of K in a 

prescribed range from 1 to Kmax. During this single long run,  the territorial cells are split or merged 

to eventually delineate population boundaries. 

The prior distribution on cluster labels in the without-admixture model of TESS is similar to 

the model used in BAPS5 (François et al 2006; Chen et al 2007). TESS builds a neighborhood for 

each individual based on a Voronoi tessellation where each cell is centered on a sampled individual. 

The prior distribution on cluster labels corresponds to a Potts model, which is widely used in 

epidemiology, image analysis and statistical physics (François et al 2006). The Potts model is a 

special case of a Markov random field, a statistical model for the spatial correlation of individual 

cluster labels. Markov random fields have the property that the state of each individual is influenced 

only by the states of its neighbors. In other words, neighboring individuals are genetically closer to 

each other than to distant individuals. The intensity of the spatial dependencies is controlled by an 

hyperparameter, ψ. The implemented value of ψ corresponds to a critical value in the Potts model, 

below which no spatial organization can a priori be observed and above which K spatially 

structured clusters can coexist. Simulations in Francois et al (2006) show, that when sampling is 

regular and for 2 - 6 clusters in the data, ψ is around 0.5 – 0.7. If sampling is geographically 

irregular, TESS can use a modified version of the Potts model in which the neighborhood graph is 

weighted by an inverse function of geometric distance, so that long edges in the graph have 

virtually no influence. 

Models with admixture. Starting from an initial partition of the sampled individuals in K clusters, 

the admixture model of BAPS5 searches for admixture events between predefined clusters 

(Corander and Martinen 2006).  The model assumes that every source population has been sampled 

before inferring potential admixture events.Thus the admixture model is by itself not spatially 

explicit. Note that only if the admixture event was recent are the parental populations or closely 

related populations likely to be sampled. With this assumption in mind, Corander and Martinen 

(2006) recommend to start the analysis by partitioning the sampled individuals with their without-

admixture model. To compute admixture proportions, BAPS5 runs an optimization algorithm that 

maximizes the posterior distribution of admixture coefficients conditional on allele frequencies 

estimated in the K parental populations. 

TESS implements a spatially explicit admixture model that does not require that the source 

populations have been sampled (Durand et al 2009).  Individual ancestry proportions are estimated 



by incorporating spatial trends and spatial autocorrelation in the prior distribution of the Q matrix. 

The priors are defined as hidden regression models with autocorrelated residuals. The regression 

models include spatial effects both at regional and local scales using a weighted Voronoi 

tessellation. In this approach, the regression is part of the modeling process. Trend surfaces account 

for clines in all directions, and autocorrelated residuals account for isolation-by-distance. Including 

spatial information in the prior distribution on the admixture proportions can also provide posterior 

estimates that have been corrected for genealogical correlation between individuals (Durand et al 

2009). The models – implemented in an MCMC algorithm – have the potential to simultaneously 

detect clines and clusters by examining the inferred variation of admixture proportions. Table 2 

summarizes the main features of the computer programs discussed in this study.

Table 2: Summary of 4 Bayesian clustering software packages and their model assumptions.

Software Admixture

Model

Parental 

populations

Rationale Prior distribution Algorithm Choice of K

STRUCTURE
    Yes Not

required

Estimates admixture 

proportions, 

Minimizes departures 

from HW and LD 

disequilibria

 Non-informative MCMC Multiple runs

ln P(D|K)

GENELAND  No Not 

relevant

Delineates populations 

under Hardy-Weinberg 

equilibrium

 Colored Voronoi 

tiling RJMCMC Single run 

Reversible Jump

BAPS 
 Yes Required

Seeks spatially smooth 

and genetically 

homogeneous clusters 

Inspired from 

Markov Random 

Field (no admixture) 

Non-informative 

(admixture)

Stochastic 

optimization

Single run 

Split and merge

TESS
 Yes Not 

required

Models spatial trends 

and  autocorrelation 

Markov Random 

Field (no admixture)

Log-Gaussian 

Random Field 

(admixture)

MCMC Multiple runs

Information theoretic 

criterion

DIC

Choosing the number of clusters

Distinct approaches have been proposed to estimate the number of cluster in each model. To avoid 

errors and misuses, it is important to remark that Kmax has not the same meaning in each program. In 

BAPS5 and GENELAND, Kmax represents a bound on the number of clusters to be explored by the 

algorithm. In TESS (and STRUCTURE), Kmax  (like K) is a fixed value, and the models have to be 

run for a range of values of Kmax (or K).

To estimate the number of cluster STRUCTURE relies on a statistical criterion, denoted 



lnP(D|K), that computes the logarithm of the probability of the data for each run. From a statistical 

point of view, this criterion is a penalized measure of fit based on a Gaussian approximation of the 

model deviance. Typically, STRUCTURE is run for several values of K, and  lnP(D|K) is computed 

for each run. In practice, it is recommended to plot lnP(D|K) against K, and to choose the value of 

K that corresponds to a plateau of the lnP(D|K) curve. The ΔK criterion of  Evanno et al (2005) 

aims at automating this process. 

To decide which values of the number of clusters are best supported by the genetic data, 

GENELAND estimates the posterior probabilities of each K via its reversible jump algorithm. The 

algorithm visits each value of K between 1 and Kmax within a single long run. It can increase or 

decrease K of one unit by splitting an existing cluster or by merging two existing clusters. Although 

theoretically attractive, reversible jump MCMC have been criticized for having poor mixing 

properties in large dimensional problems (Green and Richardson, 1997)

Similarly to GENELAND, BAPS5 split and merge algorithm allows K to be automatically 

estimated. Each split and merge move of BAPS5 algorithm is accepted if it leads to an increase of 

the posterior distribution of cluster labels. In large dimensions, the posterior distribution is likely to 

be multimodal, and the split and merge algorithm may be stuck in local optima. Thus, it may be 

necessary to run the program several times.  

For choosing K,  TESS computes the deviance information criterion (DIC; Spiegelhalter et 

al 2002), a generalization  of the Akaike information criterion for hierarchical models (Akaike 

1974).  DIC is a measure of model fit penalized by an estimate of model complexity. The values of 

K, or more generally the models that receive the most support from the data are those with the 

lowest values of the DIC.  The computation of DIC is actually similar to the computation of  lnP(D|

K)  in STRUCTURE.  In reality, STRUCTURE uses an approximation of lnP(D|K) that, up to a 

factor ½, was also proposed for DIC (Gelman et al 2004).  To choose Kmax  (and K)  or any internal 

model,  TESS can be run for distinct values of Kmax. In practice, we suggest to plot the DIC against 

Kmax , and choose the values of Kmax that correspond to a plateau of the DIC curve (Durand et al 

2009). 

Even though we could give biologically meaningful definitions of populations (Waples and 

Gaggiotti 2004), the number of genetic clusters detected by Bayesian clustering algorithms does not 

thoroughly inform the number of such populations in our sample. For example, inference of 

population structure can be biased by the choice of a particular sampling strategy  (Schwartz and 

McKelvey 2009). For PCA and STRUCTURE, the ability to detect population structure also 

depends on the sample size and on the number of markers (Patterson et al 2006; Fogelqvist et al 

2009). Thus finer structure is expected to be detected with a larger sample size. The choice of a 

particular value of K in Bayesian clustering models is done on the basis of the information 



contained in the data, and not on biological grounds. We ought to be aware that when we determine 

an optimal value of K, it is optimal only for the particular model we are using.  Because the models 

differ in their prior assumptions, there is no reason why values of K should be congruent in every 

model (see Discussion). In addition, choosing K based on a consensus of outputs may not always be 

justified. Resorting to model selection criteria to choose K overcomes these issues (Johnson and 

Omland 2004). 

Robustness of models 

To evaluate the robustness of the models to departures from their basic assumptions, we test the 

Bayesian clustering programs under three distincts scenarios: 1) A scenario of recent divergence (or 

fission) of 5 subpopulations, 2) A fusion scenario in which source populations are lost, but the 

relative proportions of each individual genome originating in each source population is variable 

accross space. 3) A spatially realistic scenario of the colonization of Europe from 2 refugia.   

Models with admixture are robust in diverging subpopulations. In first series of simulations, we 

consider a simulated data set that consists of recently diverged genetic clusters (Latch et al 2006).  

The simulation process mimicks an instantaneous fission of a large reference population, such that 

the clusters are created by drawing a random set of founders from the reference population. By 

repeating the sampling of founder individuals, data sets with two distinct levels of genetic 

differentiation are created (FST = 2 – 3%). Spatial coordinates are then associated to each individual 

such that the individuals group into geographically coherent partially connected units (Chen et al 

2007). In this simulation scenario, five genetic clusters are represented in the sample, and contribute 

to the global gene pool with no admixture. 

STRUCTURE GENELAND BAPS5 TESS
K p sd K p sd K p sd K p sd

Without 
admixture

5 0.081 0.001 5 0.126 0.023 5 0.039 0.032 5 0.044 0.001

admixture 5 0.215 0.001 N.A. 5 0.044 0.030 5 0.213 0.018

Table 3.   Data set without admixture (5 clusters, FST = 0.03). Selected number of clusters (K), average value and 

standard deviation of  missclassification rates or fraction of genome incorrectly assigned (p).  For STRUCTURE and 

TESS,  Kmax was varied from 2 to 8, and for each Kmax , 10 independent runs of 10,000 sweeps were performed (700,000 

sweeps allocated to STRUCTURE and TESS). Because GENELAND and BAPS5 infer K automatically, their maximum 

number of cluster was set to Kmax = 8, and 10 independent runs of 100,000 sweeps were performed (allocating 

1,000,000 sweeps to each program).



Figure 1. Schematic representation of the fusion scenario. Two weakly differentiated populations admixed in a recent  

past, creating a cline in allele frequencies and variable admixture proportions  along a longitudinal gradient.

For the data set with an FST = 3%, the models without admixture correctly infer the number 

of cluster, and misclassification rates are less than 12% (Table 3).  Though producing larger error 

rates, admixture models still exactly detect that there are five clusters in the data. As expected, 

BAPS5 has the most accurate admixture model in this simulation study because parental 

populations are present in the data set. For the data set with an FST = 2%,  all but one models 

without admixture correctly infer the number of cluster (Supp Table 1).  The misclassification rates 

are lower for GENELAND and TESS than for STRUCTURE. Admixture models still correctly 

detect 5 clusters, but they produce noisier estimates of ancestry proportions than for the previous 

data set. Overall, spatial models perform better than the aspatial model, and thus including spatial 

priors is beneficial to the analysis. 

Models without admixture are not robust to fusion events. To simulate admixture, we assume two 

weakly differentiated parental populations (A,B) in migration-drift equilibrium, and then we create 

an instantaneous admixture event. To include a spatial framework, we associate spatial coordinates 



Figure 2. Inferred admixture coefficients for data sets generated under a pure fusion scenario with two parental  

populations.  A) Admixture model implemented in TESS. The correlation coefficient R between estimated and true 

admixture coefficients is greater than 90% for both data sets. B) Admixture model implemented in STRUCTURE. For 

an FST of 3% between the parental populations, the cline is not uncovered, otherwise the estimates are similar to TESS.  

The data sets contain n = 400 genotypes at L = 100 diploid loci. For each program, we performed 100 independent  

runs of 10,000 sweeps with K = 2 and we kept the 10 runs that had the lowest DIC or lnP(D|K) values. We averaged the 

outputs of these 10 runs using CLUMPP.

to each individual in each population along a longitudinal axis. Then the fraction of an individual's 

genome originating in population A is proportional to its distance to A (Durand et al 2009).  As a 

consequence, the individual coefficients of ancestry vary continuously along a longitudinal gradient 

(Figure 1).

For these simulations, none of the models without admixture is able to uncover population 

structure, all leading to the inference of a single cluster in the sample. At the exception of the 

models of BAPS, that assumes known source populations, the situation is most favorable to 

admixture algorithms (Figure 2). For an FST of 4% between the ancestral populations, both 

STRUCTURE and TESS admixture models performed very well. The Pearson correlation 

coefficients between the estimated and the true coefficients take values greater than 90%.  The 

benefit of including spatial information is visible when the ancestral level of differentiation is 

decreased, as STRUCTURE fails to detect the cline (Figure 2B).

Then we use realistic simulations to generate data from a scenario that mimics the post-

glacial recolonization of Europe for many taxa, implying the co-occurrence of clusters, clines and 

local patterns of isolation-by-distance in the data (Hewitt et al 2000). The simulation takes place in 

a two-dimensional non-equilibrium stepping-stone model defined on a lattice of demes covering 



Figure 3. Schematic representation of a realistic secondary contact scenario implemented with SPLATCHE. Two 

waves of expansion started from 2 distinct southern refugia ~1,000 generations ago and the two waves met in central  

Europe ~500 generation ago. For details on the simulation, see (Durand et al 2009). Three individuals are genotyped 

at each of the 60 sample locations represented by empty circles (20 microsatellite loci).

Europe. The parameters used in this simulation are described in (Durand et al 2009). In short, 

Europe is colonized from two distant southern refugia, one in the Iberian peninsula and the other 

close to the Black Sea (Figure 3).  The simulation involves genetic divergence between parental 

populations (~600 generations), range expansion (during ~500 generations) and secondary contact 

that occurred ~500 generation ago. The simulation is performed with the program SPLATCHE 

(Currat et al 2004). For these data, the admixture models implemented in TESS and STRUCTURE 

infer K = 3 (Figure 4), which corresponds to a cline and one cluster that arose from a founder effect 

in Scandinavia. Both models detect spatial variation of ancestry coefficients in an area that 

unambiguously corresponds to the contact zone. In contrast, models without admixture detect 4 

clusters, corresponding to artificial genetic discontinuities located both sides of the contact zone.



Figure 4. Secondary contact in Europe.  A) Clusters inferred by the model without admixture implemented in 

GENELAND. The RJMCMC algorithm chooses K = 4 clusters. B) Posterior prediction of admixture proportions  

inferred by TESS (admixture model). The DIC leads to select a model with K = 3 parental populations. For TESS, we 

varied K from 2 to 8, performing 100 runs of length 10,000 for each value of K, we kept the 10 runs that obtained the 

lowest DICs.  For  GENELAND, we performed 10 independent runs each of length 100,000 sweeps.



Applications of spatially explicit Bayesian clustering programs 

Table 1 summarizes recent applications published during the last year (Spring 2008 – Summer 

2009) showing the importance of spatial Bayesian clustering methods to evolutionary biologists and 

molecular ecologists. The published studies cover a large spectrum of taxa. Most of these studies 

have been conducted at a regional scale spanning a significant range of the species habitat. Only a 

few studies have been conducted at a continental scale, often for  model species (Tishkoff et al 

2009). The analyses make approximately equal use of TESS and GENELAND although the two 

programs are seldom applied to the data simultaneously. Due to its more recent publication date, the 

spatial version of BAPS has perhaps not been given enough time to become popular among users. 

In relation to landscape genetics (Manel et al 2003), a frequent focus is on detecting genetic 

discontinuities associated with barriers to gene flow or habitat loss and fragmentation (Quéméré et 

al 2009;  Gardner-Santana et al 2009; Galarza et al 2009). In studies that attempt to locate genetic 

discontinuities, the spatial models are used without admixture options. Note that when 

STRUCTURE is used in those cases, the program is applied under its default admixture model. 

Other applications focus on detecting contact zones (Durand et al 2009), hybrid zones (Dépraz et al 

2009), random mating populations (Goombridge et al 2009) or patterns of isolation-by-distance 

(Gauffre et al 2008). When more than one model is used, the studies often report consensual results, 

but there are interesting exceptions. Using spatial models, Lavarando et al (2009) and Barr et al 

(2008) detected  biologically meaningful clusters in cases where STRUCTURE failed to detect any 

population structure. Yoshino et al (2009) detected two clusters with STRUCTURE and TESS, but 

this was not consistent with the other methods which returned hardly interpretable results. Using 

STRUCTURE, Stahlen et al (2008) detected a cline in Scandinavian populations of  Bonasa 

bonasia which seemed more plausible than the genetic boundaries found by GENELAND. Using 

the spatial admixture model of TESS in Arabidopsis thaliana, we detected a cline of variation at the 

scale of Europe, and, at the same time, a well-differentiated cluster in Scandinavia (François et al 

2008). For this data set, the result was similar to STRUCTURE for K = 3, but STRUCTURE further 

stratified the cline into four smaller clusters (Nordborg et al 2005). 

Discussion

Model assumptions. In models without admixture, the sample consists of  K genetically divergent 

groups of individuals, and each genome is classified into a specific group. Thus the models may be 

appropriate if we have prior knowledge on reproductive isolation or on a fragmented habitat. In 

these models, the variability of allele frequencies is constrained over space, because the frequencies 

are assumed to be constant within each cluster. This implies that, in the presence of clines, the 

sample may be either considered a single homogeneous population (as in our simulations of recent 



admixture) or partitioned into geographic regions where the allele frequencies stay approximately 

constant (as in Figure 4B). In the latter case, the results of the program may confound the detection 

of actual boundaries. 

In admixture models, individuals' genomes are not given a cluster label (Note that the 

terminology of "clustering" can be misleading here). In fact the 'clusters' detected by the models are 

interpretable as source populations that had diverged in the past, had reached equilibrium, and had 

been brought into contact again at a later date. In these models, the allele frequencies are less 

constrained, because there is no assumption that there are K random mating populations in the 

sample. As a consequence,  the model can detect  geographic clines in allele frequencies and 

ancestry coefficients (as in Figures 1 and 2). Spatial models of admixture are useful in this respect, 

since they include prior distributions that  explicitly take these spatial dependencies into account at 

local and global scales (Durand et al 2009). In summary admixture models are more flexible than 

models without admixture, and they may be more useful in interpreting population structure 

resulting of  fission and fusion events and for correcting biases in association studies (Falush et al 

2003; Pritchard et al 2000b).  Remark that  the likelihood framework of Bayesian clustering models 

make no explicit assumptions about the timing of divergence or admixture events.

Robustness of models. In scenarios of diverging populations, genetic groups are the results of 

random drift. Although we set the level of differentiation to low values, the models without 

admixture detect population structure accurately, and there is a visible benefit of using spatially 

explicit programs (Chen et al 2007; Latch et al 2006). Models with admixture incorrectly assign a 

non-negligible fraction of individual genomes to wrong clusters. However, the admixture models ly 

infer the number of cluster correctly, and their results actually suggest that the levels of admixture 

in the sample are low.Not surprisingly, models without admixture fail to uncover population 

structure  in scenarios of  fusion of two weakly differentiated populations, leading to the erroneous 

conclusion that  the sample is genetically homogeneous. When K = 2, the admixture models 

implemented in STRUCTURE  and TESS reveal themselves efficient at detecting the cline, in 

which the allele frequencies vary along a longitudinal gradient.  The failure of the admixture model 

of BAPS5 explains as this model requires the presence of non-admixed individuals in the sample, 

but no close descendant of the parental populations are sampled. Under spatially realistic scenarios, 

in which a species colonizes Europe from two southern refugia and exhibits a contact zone in the 

center of the area, models without admixture identify a cluster in Scandinavia, but they partition the 

European cline into three artificial compartments, thus producing spurious delineations that could 

be misinterpreted as genetic discontinuities.



Figure 5. Choice of K and model selection based on an information theoretic criterion (DIC or a variant).  In Model  

1, the values of the criterion plateaus at K1 = 4 whereas in Model 2, the plateau starts at  K2 = 3. Because the values of  

the criterion are smaller in Model 2 than in Model 1, we choose Model 2 with 3 clusters. 

Model checking and model choice. Our short simulation study does not answer two fundamental 

questions in face of a particular data set. These questions are: Which models are best supported by 

our particular data? Do spatial models provide a better description of the sample than aspatial ones? 

Systematic answers to these 2 questions have perhaps been hindered by the hegemony of 

STRUCTURE in population genetic analyses. Because a variety of clustering models are now 

available, it becomes important to address them from the statistical viewpoint. Here we argue that 

one possibility it to address them by the techniques of model checking and model choice (Johnson 

and Omland 2004). 

One way to check an inferred population structure is by applying an independent inference 

method, like PCA, which has recently re-gained in popularity owing to its ease of use and its speed 

in analyzing large genomic datasets. In addition, PCA can be modified to account for spatial 

autocorrelation (Jombart et al 2008). The results of PCA can provide a useful validation of 

Bayesian clustering outputs in particular admixture proportions (Patterson et al 2006; McVean 

2009). Model checking also can be performed by simulating replicates from the posterior predictive 

distribution (Gelman et al 2004). In this setting, model checking is done to test whether a previously 



fitted model can reproduce the observed data or not. With Bayesian clustering models, posterior 

simulations of multilocus genotypes can be easily generated given the estimated assignment 

probabilities and the allele frequencies in each cluster.  As proposed by Hoggart et al (2004), 

checking models can be performed by computing the percentage of variance explained by the first 

PCs of simulated genotypes and by comparing the distribution of these values to those computed 

from the data.  

Although the Bayesian models  considered here are based on a common likelihood 

framework, they make  different assumptions. Thus, even though we would be able to find values of 

K that optimally describe our data set for each algorithm, those optimal values of K could still 

disagree with each other. The choice of K and more generally the decision of which models are best 

supported by the data  can be addressed on the basis of information theoretic criteria, like the 

deviance information criterion (Figure 5). Like AIC, lower values of DIC indicate better models. 

For example, Durand et al (2009) used  DIC to choose between three distinct prior distributions on 

ancestry coefficients  for data from the killifish Fundulus heteroclitus. One of the tested models was 

equivalent to the uncorrelated allele frequency admixture model of STRUCTURE. According to the 

DIC, there was 5 clusters in the sample with the aspatial model. The 5 clusters were checked to be 

almost identical to those obtained with the default options of STRUCTURE, for which the ΔK 

criterion also selected 5 clusters. A spatially explicit admixture version of TESS obtained lower DIC 

scores than the aspatial model, indicating that a cline better described the data  than the 5 clusters 

inferred by STRUCTURE.  Where models have similar levels of support, model averaging – using 

the program CLUMPP (Jakobsson and Rosenberg 2007) – can also produce robust estimates of 

membership or ancestry coefficients. 

Conclusions.  There are many cases where the inference of population structure can benefit from the 

modeling of the various geographic scales at which spatial genetic variation arises.  Models can 

account for local dispersion that generate patches of covarying allele-frequencies by including 

spatial autocorrelation (Epperson and Li 1996). In addition, they can also account for global trends 

in allele frequencies and admixture proportions created by range expansions and secondary contact 

at regional scales (Durand et al 2009).  Answering the "with or without admixture" question, we 

urge users of Bayesian clustering programs to run admixture models on their data, because these 

models are more flexible and more robust than models without admixture. We suggest to run more 

than one model, and to use statistical model selection, for example based on information-theoretic 

criteria, to decide which results should be retained. We also suggest that these results may not 

necessarily correspond to a consensus of program outputs. Like for PCA, we should keep in mind 

that Bayesian clustering models are tools for exploring the data  (Patterson et al 2006; McVean 



2009). Because their assumptions make an obvious simplification of the biological reality, and 

because several demographic scenarios can result in similar clustering, genealogical interpretations 

of their outputs remain difficult. Efforts to develop improved model-based clustering methods are 

still necessary.  
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