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Summary

1 Based on population genomic and environmental data, genomewide ecological association studies aim at

detecting allele frequencies that exhibit significant statistical association with ecological gradients. Ecological

association studies can provide lists of genetic polymorphisms that are potentially involved in local adaptation to

environmental conditions through natural selection.

2 Here, we present theR packageLEA that enables users to run ecological association studies from theR com-

mand line. The package can perform analyses of population structure and genome scans for adaptive alleles from

large genomic data sets. It derives advantages from R programming functionalities to adjust significance values

formultiple testing issues and to visualize results.

3 This note also illustrates the main steps of ecological association studies and the typical use ofLEA for analy-

sing data sets based onR commands.

Key-words: control of false discoveries, ecological association studies, genome scans for signature

of local adaptation, inference of population structure

Introduction

Local adaptation through natural selection is an important

driver of evolutionary changes in natural populations (Darwin

1859; Williams 1966), and understanding the molecular bases

of local adaptation is a fundamental step in evolution, molecu-

lar ecology, global change or conservation biology (Joost et al.

2007; Manel et al. 2010; Jay et al. 2012; Schoville et al. 2012).

Using landscape genomic data, signatures of local adapta-

tion can be detected by identifying allele frequencies that exhi-

bit significant association with ecological gradients linked to

various selection pressures (Joost et al. 2007; Hancock et al.

2008; Fumagalli et al. 2011; Frichot et al. 2013). To achieve

this goal, genomewide ecological association studies screen

genomic data that consist of thousands of individual geno-

types, including single nucleotide polymorphisms (SNPs) and

other types of allelic data. Ecological factors encompass cli-

matic variables such as temperature and precipitation data

(Hancock et al. 2008; Manel et al. 2010), habitat descriptors

such as elevation, or pathogen density (Fumagalli et al. 2011),

which are sources of spatially varying selection.

Computer tools that implement ecological association tests

include the programs sam (Joost et al. 2007), Bayenv
(Coop et al. 2010) and LFMM (Frichot et al. 2013). The pro-

grams sam and Bayenv are based on generalized linear

regression models, whereas the program LFMM uses linear

mixed models. Bayenv and LFMM are based on Bayesian

methods that perform corrections for confounding effects due

to patterns of isolation-by-distance, population structure and

genomic background. All these programs share the drawbacks

of requiring pre- and post-treatments that include analysis of

population structure, control of false discovery rates and visu-

alization of results. A program allowing users to perform the

aforementioned treatments within a unified interface is still

missing.

In this study, we present an integrated framework for popu-

lation genetic analyses and ecological association studies. We

describe the R computer package LEA that runs large-scale

ancestry analyses, performs genome scans for selection, pro-

vides methods for solving multiple testing issues and generates

graphical outputs for the results. More specifically, the LEA
toolbox contains population structure estimation methods

such as principal component analysis (PCA) or non-negative

matrix factorization algorithms (sNMF, Frichot et al. 2014),

and association methods such as latent factor mixed models

(LFMM, Frichot et al. 2013). In addition, LEA contains pro-

cedures for calibrating statistical models and for controlling

false discovery rates. The details of all options of LEA are

available in online documentation files and in aweb tutorial.

Program implementation,materials andmethods

Genomewide ecological association studies include two main steps.

The first step consists of assessing population genetic structure from
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the genomic data, and evaluating the factors that could influence the

interpretation of results. The second step consists of testing associa-

tion of allele frequencies with ecological gradients. This step includes

correction for biases due to population structure and other – often

unobserved – confounding factors. The R package LEA enables per-

forming the two analytical steps within a unified framework based on

factor models and on the R statistical program. The package opti-

mizes algorithmic speed and memory allocation while preserving the

flexibility of statistical analysis using R. Functions implemented in

LEA call functions written in the C programming language. These

functions are able to process massive genomic data from the R com-

mand line without loading the program memory. Thus, the strength

of the LEA package is to allow its users to perform computer inten-

sive analyses, while benefiting of the statistical and visualization meth-

ods available from R.

DATA FORMAT

The R package LEA can handle several classical formats for input

files of genotypic matrices. More specifically, the package uses the

lfmm and geno formats and provides functions to convert

from ped, vcf and ancestrymap formats. While the

lfmm and geno formats usually encode SNP data, those for-

mats can also be used for coding amplification fragment length

polymorphisms and microsatellite markers. In addition to geno-

typic matrices, LEA can also process allele frequency data when

they are encoded in the lfmm formats. Ecological variables must

be formatted in the env format used by the computer program

LFMM (Frichot et al. 2013).

ANALYSIS OF POPULATION STRUCTURE

TheR packageLEA implements two classical approaches for the esti-

mation of population genetic structure: principal component analysis

(PCA) and admixture analysis (Pritchard, Stephens & Donnelly 2000;

Patterson, Price & Reich 2006). The algorithms programmed in LEA
are improved versions of PCA and admixture analysis able to process

very large genotypicmatrices efficiently.

The LEA function pca computes the scores of a PCA for a

genotypicmatrix and returns a scree plot for the eigenvalues of the sam-

ple covariancematrix.Usingpca, an object of classpcaProject
is created. This object contains a path to the files storing eigenvectors,

eigenvalues and projections. The number of significant components

can be evaluated using graphical methods based on the scree plot

or computing Tracy–Widom tests with the LEA function

tracy.widom (Patterson, Price&Reich 2006).

Similar to Bayesian clustering programs, LEA includes an R func-

tion to estimate individual admixture coefficients from the genotypic

matrix (Pritchard, Stephens & Donnelly 2000; Franc�ois & Durand

2010). Assuming K ancestral populations, the R function snmf pro-

vides least-squares estimates of ancestry proportions (Frichot et al.

2014). The snmf function also estimates an entropy criterion that

evaluates the quality of fit of the statistical model to the data using a

cross-validation technique. The entropy criterion can help choosing the

number of ancestral populations that best explains the genotypic data

(Alexander & Lange 2011; Frichot et al. 2014). The number of ances-

tral populations is closely linked to the number of principal compo-

nents that explain variation in the genomic data. Both numbers can

help determining the number of latent factors when correcting for con-

founding effects due to population structure in ecological association

tests.

ECOLOGICAL ASSOCIATION TESTS

The R package LEA performs ecological association tests based on

latent factor mixed models (LFMM, Frichot et al. 2013). LetG denote

the genotypic matrix, storing allele frequencies for each individual at

each locus, and let X denote a set of d ecological variables. LFMMs

consider genotypic matrix entries as response variables in a linear

regressionmodel

Gi‘ ¼ l‘ þ bT‘ Xi þUT
i V‘ þ ei‘ eqn 1

where l‘ is a locus-specific effect, b‘ is a d-dimensional vector of

regression coefficients, Ui contains K latent factors, and V‘ contains

their corresponding loadings (i stands for an individual and ‘ for a

locus). The residual terms, ei‘, are statistically independent Gaussian

variables with mean zero and variance r2. In latent factor models,

associations between ecological variables and allele frequencies can

be tested while estimating unobserved latent factors that model con-

founding effects. In principle, the latent factors include levels of popu-

lation structure due to shared demographic history or background

genetic variation. After correction for confounding effects, significant

association between allele frequencies and an observed ecological var-

iable is often interpreted as evidence for selection at a particular

locus.

The R package LEA implements an improved version of the

LFMM estimation algorithm proposed by Frichot et al. (2013).

The R function lfmm computes the posterior distribution of the

regression coefficients corresponding to each ecological factor using

a Gibbs sampler algorithm. The lfmm function allows users to

perform multiple runs of the estimation algorithm for distinct val-

ues of K. It creates an object of class lfmmProject that con-

tains the z-scores and P-values for locus-specific effects in each run.

The P-values are obtained from the Student t-distribution using

n�d�1 degrees of freedom and can be recalibrated using R com-

mands.

LATENT FACTOR MIXED MODELS IN PRACTICE

A correct calibration of LFMM tests assumes that the test P-values

have uniform distribution when the ecological variables have no

effect on genetic variation Running LFMM with distinct numbers of

latent factors is the way by which users could choose models that

check this condition. LFMM association tests exhibit better perfor-

mances for values close to the number of significant components in a

PCA, or close to the number of clusters obtained from a clustering

analysis (Frichot et al. 2013). We suggest that the values obtained

from analyses using the R functions pca or snmf could define a

range to explore when running lfmm analyses. Deciding the best

values for the number of latent factors in LFMM can then be based

on the analysis of the histograms of test P-values. For multiple runs

using a same value of K, z-scores can be combined with the Stouffer

or similar methods (Liptak 1958). To decide which test can be

applied (and choose K, the number of latent factors), we use a geno-

mic inflation factor, k, for example defined by Devlin & Roeder

(1999) as k ¼ medianðz2Þ=0�456, where z is a vector that contains

z-scores for all loci, and 0�456 corresponds to the median of the chi-

square distribution. P-values are correctly calibrated when the infla-

tion factor is close to one. We then modify the z-scores by dividing

them by the square root of k. With this method, standard algorithms

implemented in R can be used to produce lists of candidate loci based

on the control of the false discovery rate (Benjamini & Hochberg

1995).
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SIMULATED AND BIOLOGICAL DATA

We considered simulated genotypes from populations that under-

went a demographic range expansion 1000 generations ago (Frichot

et al. 2015). In computer simulations using the program SPLAT-
CHE (Currat, Ray & Excoffier 2004), a rectangular area was colo-

nized from a unique source located south of the area. The

simulations implemented a non-equilibrium stepping-stone model

based on a rectangular array of demes. For each deme, the migra-

tion rate was equal to m = 0�4, the expansion rate was equal to

r = 0�4, and the carrying capacity was equal to C = 100. We simu-

lated genetic variation at 4500 neutral SNPs and at 500 adaptive

SNPs. We sampled four individuals from each of the 165 demes.

To simulate genetic variation at adaptive loci, we created an artifi-

cial ecological gradient that paralleled the main axis of expansion.

We linked allele frequencies to the ecological gradient by using the

Haldane transform (Haldane 1948). This transform reproduces

clinal allele frequency patterns as expected under spatially varying

selection intensities. In addition to our simulated data set, we con-

sidered genomic data from the model plant Arabidopsis thaliana

genotyped at 205 406 SNPs (Atwell et al. 2010). We focused our

example on the study of 49 accessions from Scandinavia and con-

sidered ecological gradients linked to temperature by extracting 11

variables from the WorldClim data base at each of the 49 sampling

sites (annual mean temperature, mean diurnal range, temperature

seasonality, etc). We summarized the 11 variables as a unique eco-

logical factor by computing the first principal component of the

temperature variables.

Ecological association studies usingLEA

In this section, we illustrate the use of the R package LEA for

analysing ecological genomic data from simulated populations

and from Scandinavian populations of the plant species Ara-

bidopsis thaliana (Atwell et al. 2010).

ANALYSIS OF SIMULATED DATA

We started our analysis of the data by evaluating population

genetic structure with the R function snmf. For number of

factors ranging from 1 to 10, we estimated ancestry coefficients

for each individual in the sample, and we computed the cross-

entropy criterion as follows

project.snmf = snmf("genotypes.
geno",K=1:10,entropy=T)

The cross-entropy criterion decreased when the number of

factors increased from 1 to 6. A minimum value was obtained

when K = 8 clusters were considered, indicating that genetic

contribution from 8 ancestral populations optimally predicts

masked individual genotypes (Fig. 1a). Population structure

was also assessed using principal component analysis using the

LEA functionpca. In agreement withNMF results, substan-

tial drops in the distribution of the empirical covariancematrix

eigenvalues were observed for components 1–6. Thus, the func-
tions pca and snmf provided congruent evidence of com-

plex population genetic structure in the data.

We continued our analysis by performing ecological associa-

tion tests on the genotypic matrix. We used the R function

lfmm to fit latent factors mixed models to the data and test

association between loci and a simulated ecological gradient.

Based on our analysis of population structure, we computed

locus-specific z-scores and P-values for numbers of latent fac-

tors ranging between K = 4 and K = 10. For each value of K,

the Gibbs sampler algorithm was run 10 times for a period of

5000 cycles following a burn-in period of 5000 cycles. The cor-

respondingLEA commandwithK = 6 latent factors is

project.lfmm=lfmm
(input.file="genotypes.lfmm",envi-
ronment.file="gradients.env",
K=6,iterations=10000,burnin=5000,

repetitions=10)
zs.table =z.scores(project.lfmm)

Each run took approximately 20 min of a 2�4 GHz Intel

Xeon 64 bit computer processing unit. The created object

project contained paths to external files recording the

results of LFMM runs, and the function z.scores
extracted z-scores from those external files. Using a standardR
command, z-scores were combined using themedian value

zs = apply(zs.table, MARGIN = 1,
median)

and a genomic inflation factor was computed as follows

lambda =median(zs2)/.456

The genomic inflation factor indicated that a good choice

for the number of latent factors wasK = 6 (Fig. 1b), and P-val-

ues were adjusted as follows
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Fig. 1. Simulated data analysis. (a) Values of

the cross-entropy criterion as a function of the

number of factors insnmf runs. (b) Average

values of the genomic inflation factor as a

function of the number of latent factors in

lfmm runs.
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adj.p.values = pchisq(zs2/lambda,
df=1,lower=F)
Figure 2 shows that , the adjusted P-values were correctly

calibrated for K = 6 factors. To adjust P-values for multiple

testing issues, we used the Benjamini–Hochberg procedure

with expected levels of FDR equal to q = 5%, 10%, 15% and

20%, respectively (Benjamini & Hochberg 1995). For an

expected level of FDR equal to q = 10%, a list of candidate

loci is given by

L =length(adj.p.values)
q =0.1
w =which(sort(adj.p.values)

<q*(1:L)/L)
candidates =order(adj.p.values)[w]

For K = 6, the genomic inflation factor was equal to

k = 0�91. The observed FDRs were equal to 4�9%, 8%, 10%

and 13% for q = 5%, q = 10%, q = 15% and q = 20%,

respectively. These results suggest that values of the inflation

factor less than 1 provide better calibration of LFMM tests

than values greater than 1. In addition, the power to reject neu-

trality was equal to 70%, 85%, 91% and 94% for q = 5%,

q = 10%, q = 15% and q = 20%, respectively. For K = 9, the

genomic inflation factor was equal to k = 0�44. The observed
FDRs were equal to 7�7%, 11%, 15% and 19% for q = 5%,

q = 10%, q = 15% and q = 20%, respectively. The power to

reject neutrality was equal to 81%, 91%, 96% and 99% for

q = 5%, q = 10%, q = 15%and q = 20%, respectively.

BIOLOGICAL EXAMPLE

We analysed A. thaliana population genetic data using the

LEA functions snmf and pca. Using snmf, the

cross-entropy criterion exhibited a minimum value for K = 6

factors (Fig. 3). Using pca, a break in the distribution of the

eigenvalues was observed at the 6th eigenvalue. We performed

ecological association tests using the LEA function lfmm
with numbers of latent factors ranging from K = 1 to K = 8.

The ecological gradient was derived from a linear combination

of temperature variables. We ran the Gibbs sampler algorithm

for a period of 5000 cycles following a burn-in period of 5000

cycles. The genomic inflation factor was closest to the value

k = 1�0 for K = 6 latent factors. Using 6 latent factors and

after controlling the FDR at the level q = 5%, the program

produced a list of 673 candidate SNPs, representing 0�3% of

the total number of loci. We observed that 498 putatively

adaptive SNPs were found in exomic sequences. Our list

included SNPs in the chromosome 2 (AT2G27140,

AT2G47940) and in the chromosome 5 (AT5G08000,

AT5G07390) that were previously reported as being involved

in biological processes related to heat stress and defence

response. We performed a gene ontology enrichment analysis

using the softwareamiGO in order to evaluate whichmolecu-

lar functions might be involved in adaptation to temperature

gradients inA. thaliana (Carbon et al. 2009). We found signifi-

cant enrichment in molecular functions linked to catalytic

activity (catalysis of biochemical reaction at physiological tem-

peratures, GO:0003824, P = 1�6e-8) and hydrolase activity

(G0:0016787,P = 2�7e-6).

Discussion

Performing statistical analyses for genomewide ecological

association studies requires several steps that include (i)

assessment of confounding factors, (ii) corrections of sta-

tistical tests for biases generated by those factors and (iii)

adjusting significance values for multiple testing issues.

These steps are often conducted separately by using

recently proposed approaches and by post-processing

results with statistical programs. The main advantage of

the R package LEA is to provide an approach for con-

ducting all analytical steps from a unique interface. Users
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can benefit of the speed and efficiency of matrix factoriza-

tion algorithms for analysing genomic data sets. In addi-

tion, they also benefit of many useful functionalities for

visualization and analysis of the results obtained with

those methods.

Our examples illustrated how traditional population struc-

ture analyses could be conducted from R, and how their

results could be integrated in ecological association studies

using latent factor models. PCA and clustering methods

indeed provide useful information that help exploring the

number of latent factors in LFMM analyses. Criteria that

evaluate the quality of model predictions and the calibration

of significance values were programmed in R using only a

few language instructions. For example, model choice was

based on the shape of P-value histograms evaluated though

the genomic inflation factor. Computing the genomic infla-

tion factor needed a single R language instruction, and

P-values were corrected after running a simple R command.

Calling the pchisq function, we applied FDR control

procedures to generate lists of candidate loci, which was

done using standard R functions as well. Our example sug-

gested that evaluating the number of latent factors in latent

factor models based on inflation factors and combining

P-values from several runs lead to correct control of the

FDR.

To conclude, the R package LEA provides an easy-to-use

interface to ancestry estimation and genome scan programs for

assessing association of allele frequencies to ecological gradi-

ents. The program combines the flexibility of the R environ-

ment and computer intensive programs that can process high

volumes of genomic data.

INSTALL ING THE R PACKAGE LEA

The LEA package can be installed from compressed .zip
or .tar.gz files using the R command install.
packages. These files are available from the Biocon-
ductor resource repository http://www.bioconductor.org.

Online documentations and tutorials are available from the

authors’ webpages.
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