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Review
Glossary

Bayes factor: the ratio of probabilities of two models that is used to evaluate

the relative support of one model in relation to another in Bayesian model

comparison.

Bayesian statistics: a general framework for summarizing uncertainty (prior

information) and making estimates and predictions using probability state-

ments conditional on observed data and an assumed model.

Coalescent theory: a mathematical theory that describes the ancestral

relationships of a sample of ‘individuals’ back to their common ancestor.

Individuals may represent molecular marker loci, genes, or chromosomes

depending on the context.

Credible interval: a posterior probability interval used in Bayesian statistics that

can be directly constructed from the posterior distribution. For example, a 95%

credible interval for the parameter u means that the posterior probability that u

lies in the interval is 0.95.

Deviance Information Criterion (DIC): an information theoretic measure used to

determine if improvement in model fit justifies the use of a more complex

model whereby model complexity is expressed with a quantity related to the

number of parameters.

Dimension reduction: the mathematical process of transforming a number of

possibly correlated variables into a smaller number of variables. A well-known

example of such methods is principal component analysis, but other methods

such as feed-forward neural networks (FFNNs) or partial least-squared

regression (PLS) are used in the analysis of complex genetic data. FFNNs are

flexible non-linear regression models. PLS is a regression method for

constructing predictive models in the presence of many factors.

Effective population size (Ne): the size of an idealized Wright–Fisher population

that has the same level of genetic drift as the population in question.

Hierarchical models: models in which the parameters of prior distributions are

estimated from data rather than using subjective information. Hierarchical

models are central to modern Bayesian statistics and allow an objective

approach to inference.

High-throughput genotyping: a common name for recently developed, next-

generation sequencing technologies that provide massively parallel sequen-

cing at low cost and without the requirement for large, automated facilities.

Markov Chain Monte Carlo (MCMC): an iterative Bayesian statistical technique

that generates samples from the posterior distribution. Well-designed MCMC

algorithms converge to the posterior distribution, which is independent of the

starting position.

Posterior distribution: the conditional distribution of the parameter given the

data, which is proportional to the product of the likelihood and the prior

distribution.

Posterior predictive distribution: the distribution of future observations

conditional on the observed data.

Prior distribution: the distribution of parameter values before any data are

examined.

Statistical phylogeography: an interdisciplinary field that aims to understand

the processes underlying the spatial and temporal dimensions of genetic

variation by combining information from genetic, ecological and paleontolo-

gical data.

Sufficient statistics: a statistic is sufficient for a parameter, u, if the probability

of the data, given the statistic and u, does not depend on u. In other words, a
Understanding the forces that influence natural vari-
ation within and among populations has been a major
objective of evolutionary biologists for decades. Motiv-
ated by the growth in computational power and data
complexity, modern approaches to this question make
intensive use of simulation methods. Approximate Baye-
sian Computation (ABC) is one of these methods. Here
we review the foundations of ABC, its recent algorithmic
developments, and its applications in evolutionary
biology and ecology. We argue that the use of ABC
should incorporate all aspects of Bayesian data analysis:
formulation, fitting, and improvement of a model. ABC
can be a powerful tool to make inferences with complex
models if these principles are carefully applied.

Inference with simulations in evolutionary genetics
Natural populations have complex demographic histories:
their sizes and ranges change over time, leading to fission
and fusion processes that leave signatures on their genetic
composition [1]. One ‘promise’ of biology is that molecular
data will help us uncover the complex demographic
and adaptive processes that have acted on natural
populations. The widespread availability of different
molecular markers and increased computer power has
fostered the development of sophisticated statistical
methods that have begun to fulfill this expectation. Most
of these techniques are based on the concept of likelihood,
a function that describes the probability of the data given a
parameter.

Current approaches derive likelihoods based on classi-
cal population genetics or coalescent theory [2,3]. In recent
years, likelihood-based inference has frequently been
undertaken using Markov chain Monte Carlo (MCMC)
techniques [2,4]. Many of these methods are, however,
limited by the difficulty of computing the likelihood func-
tion, thus restricting their use to simple evolutionary
scenarios and molecular models. Additionally, even with
ever-increasing computational power, these techniques
cannot keep up with the demands of the large amounts
of data generated by recently developed, high-throughput
DNA sequencing technologies. Both of these factors have
stimulated the development of new methods that approxi-
mate the likelihood [4].

One of the most recent approaches is Approximate
Bayesian Computation (ABC [5]). ABC approaches bypass
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exact likelihood calculations by using summary statistics
and simulations. Summary statistics are values calculated
from the data to represent the maximum amount of
information in the simplest possible form. Their use goes
sufficient statistic provides just as much information to estimate u as would the

full dataset.
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Box 1. Inferring the demographic history of Drosophila melanogaster

Selection or demography?

Understanding the relative importance of selective and demographic

processes raises considerable interest, however disentangling the

effects of the two processes poses a serious challenge. This is

because selection and demography may result in similar patterns of

nucleotide variability. Developing models that take into account

demographic processes is essential to identify regions of the

genome under selection. For Drosophila melanogaster, Thornton

and Andolfatto [16] propose a simple model of the demographic

history and, using ABC and Bayesian evaluation of the goodness of

fit, they show that their model can predict the majority of the

observed patterns of molecular variability without invoking selective

processes.

The bottleneck model

In the cosmopolitan D. melanogaster, molecular variation is sub-

stantially reduced outside of Africa. This suggests an African origin

and a reduction in population size when colonizing other continents.

The population model includes a reduction in population size, and

then for simplicity a recovery to the same effective population size as

before (bottleneck, Figure I). Timing of the bottleneck can provide an

estimate of the date of colonization of Europe, from where the authors

have obtained samples of molecular data.

Dating the colonization event

Biogeographical studies suggest that D. melanogaster colonized

the rest of the world only after the last glaciation period (about

6,000–10,000 years ago) [101]. Using patterns of variability observed

at 115 loci scattered across the X chromosome in a European

population of D. melanogaster, Thornton and Andolfatto estimate

the start of the bottleneck to be 16,000 years before the present,

associated with a 95% credible interval of 9,000–43,000 years [16].

Thus, molecular data suggest that the colonization of Europe might

have occurred before the last glaciation period.

Figure I. The bottleneck model of D. melanogaster colonizing Europe. Image of

D. melanogaster reproduced with permission from Nicolas Gompel (http://

www.ibdml.univ-mrs.fr/equipes/BP_NG/).
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back to the origins of population genetics when, for
instance, Sewall Wright [6] devised fixation indices to
describe correlations among alleles sampled at hierarchi-
cally organized levels of a population. The use of simu-
lations, both as artificial experiments in evolution and
inference tools, also has a long tradition in population
genetics [7].

The ABC of Approximate Bayesian Computation
ABC has its roots in the rejection algorithm, a simple
technique to generate samples from a probability distri-
bution [8,9]. The basic rejection algorithm consists of
simulating large numbers of datasets under a hypothes-
ized evolutionary scenario. The parameters of the scenario
are not chosen deterministically, but sampled from a prob-
ability distribution. The data generated by simulation are
then reduced to summary statistics, and the sampled
parameters are accepted or rejected on the basis of
the distance between the simulated and the observed
summary statistics. The sub-sample of accepted values
contains the fitted parameter values, and allows us to
evaluate uncertainty on parameters given the observed
statistics.

The applications of ABC are often based on improved
versions of the basic rejection scheme [5,10–13], and have
already yielded valuable insights into various questions in
evolutionary biology and ecology (Boxes 1–2). Examples
include the estimation of various demographic parameters
such as: the effective population size [14]; the detection and
timing of past demographic events (e.g. growth or decline of
populations [9,15–22]); or the rate of spread of pathogens
[23,24]. Other applications have compared alternative
models of evolution in humans [25–36]; inferred admixture
proportions [37–39]; migration rates [40,41]; mutation
rates [9]; rates of recombination and gene conversion
2

[42–44]; the strength of positive selection [45]; the influ-
ence of selection on gene regulation in humans [46]; or the
age of an allele [27,47]. ABC has also been used to make
inferences at an inter-specific level, for example: dating the
divergence between closely related species [48–52]; making
inferences about the evolution of polyploidy [53]; and
identifying a biodiversity hotspot in the Brazilian forest
[54]. In ecology, ABC has been used to infer parameters of
the neutral theory of biodiversity in tropical forests ([55],
Box 2).

Although the use of ABC is widespread in many areas of
evolutionary biology, it has become contentious in the field
of statistical phylogeography [56,57] (Box 3). The main
objections to ABC are that inference is limited to a finite
set of phylogeographical models, and that models hypoth-
esized in ABC studies are complex. As a consequence,
conclusions from ABC could be influenced by subjective
inclusion of evolutionary scenarios and implicit model
assumptions that are not foreseen by themodeler. A recent
article addresses these concerns in great detail, and points
out that they are general criticisms of model-based
approaches and are not specific to ABC [58]. We acknowl-
edge that difficulties can arise at several levels if using a
simulation-based method such as ABC, thus the principal
aim of this review is to encourage good practice in the use of
the method. Here, we review some elementary Bayesian
principles and emphasize some facets of Bayesian analysis
that are often neglected in ABC studies. Then we highlight
ways to improve inference with ABC via application of
these principles.

Bayesian data analysis: building, fitting, and improving
the model
The three main steps of Bayesian analysis are formulating
the model, fitting the model to data, and improving the
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Box 2. Inferring the parameters of the neutral theory of biodiversity

Hubbell’s theory

In community ecology, the unified neutral theory of biodiversity

(UNTB) [102] states that all individuals in a regional community are

governed by the same rates of birth, death and dispersal. The UNTB is

a stochastic, individual-based model that gives quantitative predic-

tions for species abundance data. The theory has a practical merit for

the evaluation of biodiversity: it provides a fundamental biodiversity

number. The biodiversity number can be interpreted as the size of an

ideal community that best approximates the real, sampled commu-

nity [103].

Inference of the fundamental biodiversity number

Inference under the UNTB encounters a serious theoretical issue:

species abundance data generally leads to two distinct and equally

likely estimates of the biodiversity number. One solution is to use

a-priori information to discard the unrealistic estimate of the

biodiversity number. Jabot and Chave [55] provide an elegant

alternative solution to the estimation of the biodiversity number by

combining phylogenetic information with ABC. They find that the

phylogenetic relationships between the species living in the local

community convey useful information for parameter inference.

Exploiting the information contained in ‘tree imbalance’ statistics

leads to a unique, most-likely estimate of the biodiversity number

(Figure I).

Application of ABC to tropical rainforests

Using ABC, Jabot and Chave [55] give an estimate of the

biodiversity number of the regional pool for two tropical-forest

tree plots in Panama and Columbia. The biodiversity numbers are

one order of magnitude greater than those computed by maximum-

likelihood methods that do not use phylogenetic information. One

explanation for those larger values is that the Central American

plots extend over areas of the size of the entire Neotropical

ecozone. The two forest plots in Central America would then be

connected via dispersal to a large ecozone including Central and

South America.

Figure I. Estimation of the biodiversity number, u, for communities of tropical

trees in Barro Colorado Island (Panama) with ABC. While the variation of the

species evenness (measured by Shannon diversity, H) leads to two likely values

of the biodiversity number (u1 and u2), the use of a measure of phylogenetic tree

balance, B1, leads to a unique most-likely biodiversity number (u2). Photograph

reproduced with permission from Christian Ziegler (http://www.naturphoto.de),

and figure reproduced with permission from Wiley-Blackwell [55].
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model by checking its fit and comparing it with other
models [59] (Box 4). When formulating a model, we use
our experience and prior knowledge, and sometimes resort
to established theories. This step is often mathematical in
essence because it encompasses explicit definitions for the
likelihood (or a generating mechanism) and the prior
distribution. These quantities summarize background
information about the data and the parameter values.
Fitting the model is at the heart of Bayesian data analysis
and, in modern approaches, it is often carried out with
Monte Carlo algorithms. The aim of this second step is to
calculate the posterior probability distribution and a credi-
bility interval for the parameter of interest, starting with
its prior distribution, and updating it based on the data [2].
Models are always approximations of reality, so evaluating
their goodness-of-fit and improving them is the third step
of a Bayesian analysis. In this step, we often need to
confront two or more models that differ in their level of
complexity. The three steps of a Bayesian analysis are
strongly inter-dependent and should be considered as a
unified approach, with a possibility of cycling through the
three stages.
Model building

Two intimately linked questions arise when formulating or
improving models. First, why do we want models? Second,
how complex should the models be? Models can be used
towards two distinct ends: explanation and prediction [60].
Although we might be concerned with prediction when
investigating the decrease of biodiversity or the con-
sequences of global change [61], evolutionary models tend
to be explanatory, i.e. they are used to help describe the
evolutionary processes that have generated the data.
There are often several potential explanatory models of
a phenomenon, and model formulation is not restricted to
hypothesizing a unique scenario. Often, many different
explanatory models can be proposed, with the main objec-
tive of finding the most parsimonious explanation. As
Einstein nicely stated, ‘‘models should be as simple as
possible, but not more so’’ [62].

Model fitting

ABC algorithms can be classified into three broad
categories. The first class of algorithms relies on the basic
rejection algorithm [8,9]. Technical improvements of this
3
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Box 3. Controversy surrounding ABC

The ABC approach has been vigorously criticized by Templeton

[56,57] and forcefully defended by a group of statistical geneticists

[58]. The purpose of this Box is, therefore, to acknowledge the

existence of this controversy and to provide a brief comment on the

criticisms that we deem most relevant.

The issue that is most thoroughly discussed is the testing of

complex phylogeographic models via computer simulation. Accord-

ing to Templeton, the impossibility of including an exhaustive set of

alternative hypotheses in the testing procedure forces us to choose

only one subset, introducing a great deal of subjectivity in the

process. Moreover, in this situation one runs the risk of not including

the true model in the restricted set of models, in which case the

results of the test would be meaningless. According to Beaumont

et al. [58], this situation is applicable to all model-based methods

whether they rely on simulations or not. Although in principle this is a

potentially important problem, in reality scientific arguments often

revolve around a limited number of hypotheses or scenarios without

the need to consider an infinite set of alternative models. The issue

then becomes the possibility of model mis-specification, something

that is also addressed by Templeton but again is not restricted to ABC

approaches. This problem can in part be addressed by using the

many statistical techniques for assessing the fit of a model [58].

Models can always be improved and refined by other authors,

allowing an open discussion that can greatly increase our under-

standing of the problem being studied. This is the way scientific

progress is made.
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basic scheme correct for the discrepancy between the
simulated and the observed statistics by using local linear
or non-linear regression techniques (Figure 1) [5,10,63]. A
second class of methods, ABC-MCMC algorithms, explore
the parameter space iteratively using the distance between
the simulated and the observed summary statistics to
update the current parameter values [11,64]. In this
way, parameter values that produce simulations close to
the observed data are visited preferentially. As in standard
Box 4. Tutorial on ABC: estimating the effective population size

Estimating the effective population size from molecular data is of

interest to many evolutionary biologists. Here, we propose a sample

of 40 haploid individuals genotyped at 20 unlinked microsatellite

loci.

Models

Before seeing the data, three candidate demographic scenarios are

hypothesized: constant population size, bottleneck, and divergence

(where an ancestral population splits into two sub-populations of

equal size). Uniform prior distributions are assumed. Simulations are

carried out with Hudson’s coalescent sampler, ms [88].

Inference and model choice

Model fitting is based on two classic summary statistics: genetic

diversity and the Garza–Williamson statistic [104]. Both measures are

known to be sensitive to historical variation in population size.

Estimation of the present effective population size, Ne, is carried out

according to the algorithm of Beaumont et al. [5]. Additional model

parameters such as the divergence time or the duration and severity

of the bottleneck are considered to be ‘nuisance parameters’ and

estimates of Ne are averaged over these variables. Estimates obtained

under the bottleneck and divergence models are close to the value we

used for generating the example dataset (Ne = 600, Table I). Posterior

model probabilities computed by multinomial logistic regression [66]

reveal that the bottleneck model is the most supported by the data

(61%), but the divergence model also receives considerable support

(38%).

Model checking and model averaging

Replicates of the data under the three models were simulated

using the posterior estimates of the parameters. The distributions

of the replicated data (posterior predictive distributions) were

compared with the observed data in terms of the expected

heterozygosity, a ‘test’ statistic that was not used during the

model-fitting stage. We find that the observed value of hetero-

zygosity lay within the tails of the posterior predictive distribution

under the bottleneck and divergence models, but well outside

under the constant population size model. We decided to discard

the constant population size scenario, and estimated Ne by

weighting the posterior values obtained from the bottleneck and

divergence models (Figure I).

4

MCMC methods, ABC-MCMC requires that the Markov
chain converges to its stationary state, a condition that can
be difficult to verify [4]. A third class of algorithms is
inspired by Sequential Monte Carlo methods (SMC) [65].
SMC-ABC algorithms approximate the posterior distri-
bution by using a large set of randomly chosen parameter
values called ‘particles’. These particles are propagated
over time by simple sampling mechanisms or rejected if
they generate data that match the observation poorly.
(Ne)

Figure I. The main steps of an ABC analysis.

Table I. Posterior estimates of Ne

Model Posterior

median

95% credible

interval

Constant population size 3274 3974, 4746

Bottleneck 588 238, 1065

Divergence 550 236, 1310



Figure 1. Linear regression adjustment in the ABC algorithm. In ABC, we repeatedly sample a parameter value, ui, from its prior distribution to simulate a dataset, yi, under a

model. Then, from the simulated data, we compute the value of a summary statistic, S(yi), and compare it with the value of the summary statistic in the observed data, S(y0),

using a distance measure. If the distance between S(y0) and S(yi) is less than e (the so-called ‘tolerance’), the parameter value, ui, is accepted. The plot shows how the

accepted values of ui (points in orange) are adjusted according to a linear transform, ui
* = ui – b(S(y) – S(y0)) (green arrow), where b is the slope of the regression line. After

adjustment, the new parameter values (green histogram) form a sample from the posterior distribution.
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Ongoing work is seeking to improve the parameter space
exploration and develop efficient sampling strategies that
drive particles toward regions of high posterior probability
mass [12,13,66].

Model improvement

Comparing models and evaluating their goodness-of-fit are
fundamental steps in the modeling and inference process
(Box 4). Model comparison is often based on a decision
theoretic framework, the objective of which is to choose
models receiving high posterior support. In ABC studies,
the posterior probability of a given model can be approxi-
mated by the proportion of accepted simulations given the
model [9,28], by logistic regression estimates [25,67], or
updated through a sequential Monte Carlo algorithm
[66,68].When comparing twomodels, often the Bayes factor
is reported [9,18,69]. In this process, model choice does not
imply the selection of a single ‘best’ model [60]. Different
mechanisms could lead to the samedatapatterns, so several
models could explain the data equally well. For example,
both a weak population bottleneck and population subdivi-
sion with migration produce gene genealogies having long
internal branches [70]. Thus, both demographic models can
provide equally good explanations for anobservedpattern of
genetic variation [71]. Instead of focusing on a singlemodel,
we should consider the plausibility of each alternative
model, and eventually weight parameter estimates over
several models [72] (see Box 4).

The objective of model checking is to understand the
ways in which models do not fit the data. The current
practice in Bayesian data analysis is oriented towards
graphical checks whereby data simulated from the fitted
model are compared with the observation through ‘test’
statistics (so-called ‘posterior predictive checks’, see Box 4).
Specifying the test statistics amounts to deciding which
aspects of the model are relevant to criticism. Posterior
predictive checks were applied recently to coalescent
models in ABC [16,20,36]. Another example of model
checking is given by Schaffner and colleagues [73], who
calibrated a model of human evolutionary history to gen-
erate data that closely resembled empirical data in terms
of allele frequencies, linkage disequilibrium, and popu-
lation differentiation.

Choice and dimension of summary statistics
Carrying out inference based on summary statistics
instead of the full dataset inevitably implies discarding
potentially useful information. More specifically, if a sum-
mary statistic is not sufficient for the parameter of interest,
the posterior distribution computed with this statistic
would not be equal to the posterior distribution computed
with the full dataset [4]. Many areas of evolutionary
biology focus on developing informative statistics. An
example of a recently developed statistic is the extended
haplotype homozygosity that aims to detect ongoing
positive selection using genomic data [74]. The choice of
summary statistics is crucial, and is closely linked to the
particular inference questions addressed. In fact, ABC can
be limitedby theavailability of informative statistics for any
particular model parameter [75]. For example, the number
5
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of polymorphic sites is useful in population genetics for the
estimation of scaled mutation rates, but it says little about
the demographic history [75]. As another example, FST, a
well-known measure of population differentiation, is infor-
mative for estimating themigration rate between two popu-
lations under a symmetric island model [6], but less
informative when estimating the migration rate in a model
of divergence with migration [76].

An intuitive approach to the lack of sufficient summary
statistics in most problems is to increase the number of
summary statistics, thereby increasing the amount of
information available to the ABC algorithm [38]. However,
increasing the number of statistics can reduce the accuracy
of the inference [5]. The need to manipulate large numbers
of summary statistics is amplified by the ongoing increase
in the amount of available data. With hundreds of loci, one
approach is to average summary statistics over loci.
Another approach is to use the quantiles and the moments
of the summary statistic distribution across the loci
[18,33,48] or the allele frequencies themselves [38],
thereby increasing the dimensionality of the set of sum-
mary statistics. This might be a concern because ABC
algorithms attempt to sample from a small, multidimen-
sional sphere around the observed summary statistics, and
the probability of accepting a simulation decreases expo-
nentially as dimensionality increases. As a result, the
number of summary statistics that can be handled with
a reasonable number of simulations is limited in any ABC
algorithm [5]. To circumvent this problem, a method for
selecting summary statistics has been proposed that scores
summary statistics according to whether their inclusion in
the analysis substantially improves the quality of infer-
ence [77]. Alternative methods use dimension reduction
techniques. Dimension reduction approaches are more
robust to an increase in the number of summary statistics
than the standard ABC rejection algorithm, and they lead
to more accurate estimates. These methods encompass
non-linear feed forward neural networks [10] and partial
least square regression [64]. Neural networks and similar
algorithms can also find combinations of summary stat-
istics that contain the maximum information about the
parameters of interest, and so are also useful in the selec-
tion of summary statistics [10].

The future of ABC
Inference under complex models

ABC is extremely flexible and relatively easy to implement,
so inference can be carried out for many complex models in
evolution and ecology as long as informative summary
statistics are available and simulatingdataunder themodel
ispossible.Templeton [56,57] argues that the interpretation
of why a complex model is preferred is highly subjective
when using computer simulations. With the proliferation of
highly complex models, Bayesian statisticians and evol-
utionary biologists have made efforts to reduce subjectivity
byusing hierarchicalmodeling techniques [48,59] and infor-
mation theoretic measures of model selection [78,79]. Hier-
archical models help in the understanding of parameter
dependencies and remove implicit assumptions that are
not foreseen by themodeler.With the development of highly
structured hierarchical models, new model selection
6

methods have come to the fore. These methods provide
explicit evaluation of model complexity based on infor-
mation theoretic measures such as Akaike’s Information
Criterion (AIC)[72,79,80] or the Deviance Information
Criterion (DIC)[78], which can be readily approximated in
ABCapproaches. Several aspects ofBayesian thinkinghave
yet tobeexplored inABC,but subjectivity canbe reducedvia
careful application of all steps of Bayesian data analysis.

Future applications

The most widespread application of ABC is in making
inferences about demographic history and local adaptation
[81,82], but applications outside evolutionary biology have
already appeared for example in epidemiology [12,23,83]
and in systems biology [13,68,84]. With the advent of high-
throughput genotyping technologies to address evolution-
ary questions [85,86], ABC applications to genome-wide
data will arrive very soon. Genome-wide approaches pre-
sent an increased level of complexity, and fast genome
samplers will become increasingly important when dealing
with haplotypic diversity and patterns of linkage disequi-
librium shaped by meiotic processes and natural selection
[87]. In this context, it will become more and more import-
ant to develop simulation programs that capture some
essential features of the biological problem, but which
can also sample whole genomes. An example of ‘trading-
off’ high accuracy for decreased run-time is given in the
estimation of recombination rates from genome-wide hap-
lotypic data based on the coalescent and its extensions [88].
Various approximations to the coalescent allow for fast
simulation of recombining haplotypes [89,90]. Although
the mathematical ‘tricks’ used for improving speed might
be unrealistic biologically, these models continue to accu-
rately relate patterns of linkage disequilibrium to the
underlying recombination process, which make them
appropriate in an ABC inference framework.

Software for ABC inferences

ABC users can base their analysis on simulation programs
such as SIMCOAL [92], ms [93] or MaCS [91] and use
statistical software to carry out the model-fitting step.
More recently, specific ABC software have been developed
that carry out the data simulation as well as the rejection
and regression steps such as msBayes (http://msbayes.
sourceforge.net/) [94], DIYABC (http://www1.montpellier.
inra.fr/CBGP/diyabc/) [95], ONeSAMP (http://genomics.
jun.alaska.edu/asp/) [96], ABC4F (http://www-leca.ujf-gre-
noble.fr/logiciels.htm) [97], PopABC (http://code.google.
com/p/popabc/) [98] and 2BAD [99]. Even though these
ABC software packages greatly facilitate the inference step
of the algorithm, users must check their models. As with
the direction followed byMCMC programs, we predict that
efficient ABC programs will be developed to address
specific questions. For these programs, the accuracy of
inferences could also be extensively validated by model-
checking techniques [100].

Conclusions
Biology is a complex science, so it is inevitable that the
observation of biological systems leads us to build complex
models. However, the apparent ease of using an inference
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algorithm such as ABC should never hide the general
difficulties of making inferences under complex models.
The automatic process of inference is hampered by the
model definition and model checking steps, which are case-
dependent and highly user-interactive. ABC is far from
being as ‘easy as 123’. Important caveats when using ABC
algorithms canbe summarized in the followingpoints. First,
credibility intervals obtained from ABC algorithms are
potentially inflated due to the loss of information implied
by the partial use of the data. This source of error should not
be ignored, and users must be cautious about interpret-
ations of their parameter estimates. Second, all models are
wrong, thus model checking is a way to explore and under-
stand differences between model and data, and to improve
thefit between them [56]. Third, there canbe severalmodels
thatexplain thedataequallywell, andsupport fromthedata
for onemodel doesnot imply that themodel is true. Ifmodels
have common parameters, weighting parameter estimates
over severalwell-supportedmodels canproducemorerobust
estimates than estimates from a single model (Box 4). With
these caveats in mind, we argue that ABC is an extremely
useful tool to make inferences with complex models. We
envisage that many aspects of the ABC algorithms will be
further improved in the near future, such as dealing with
high-dimensional sets of summary statistics, evaluating
model complexity, and devising efficient ways for model
checking in ABC.
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