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Background: The EM algorithm

The EM algorithm is a method for estimating parameters in models with unobserved

variables. Classical examples of applications are found in model-based clustering and

in sequence analysis. EM stands for Expectation-Maximization, and it describes an

iterative method that maximizes an expected value at each iteration.

Problem statement. Assume that we observe data, y, from a probability distribu-

tion which is defined in hierarchical way, as follows

p(y|θ) =

∫
p(y|z, θ)p(z|θ)dz = E[p(y|z, θ)|θ] .

In this formula, θ is the parameter of interest, and z is an unobserved (hidden) variable

(The parameter θ and the hidden variable z can have large dimensions). The integral

symbol is a generic symbol that represents the summation symbol when z is a discrete

variable, and the multiple integration symbol when z is a continuous multidimensional

variable.

A way to estimate θ is by maximizing the log-likelihood function, where the likeli-

hood represent the probability distribution of the observed variables, y, given θ. The

solution of the optimzation problem can be formalized as follows

θ∗ = arg maxL(θ) = arg max log p(y|θ) .
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The concern with this approach is that the summation that appears in the formula of

the log-likelihood

log p(y|θ) = log

(∫
p(y|z, θ)p(z|θ)dz

)
.

is very difficult to evaluate in general.

Algorithm. To overcome the above problem, the EM algorithm repeats an iterative

process that is guaranteed to increase the likelihood of the parameter at each iteration,

and that converges to a local maximum of the likelihood function. Let θ0 denote the

current value of the parameter θ. The EM update rule replaces θ0 by θ1, the value of

θ that maximizes the following quantity

Q(θ, θ0) = E[log p(y, z|θ)|y, θ0] =

∫
log p(y, z|θ)p(z|y, θ0)dz,

and, more generally, we have

θt+1 = arg max
θ
Q(θ, θt).

The EM algorithm is useful when the quantity log p(y, z|θ) has a simple expression, for

example, a linear function of the hidden variable z, and when the probability p(z|y, θ0)

can be easily obtained from the Bayes formula

p(z|y, θ0) ∝ p(y|z, θ0)p(z|θ0).

Exercise. Basic arguments and remarks. Answer the following questions.

1. Find justifications for why the likelihood increases at each iteration and summa-

rize the key arguments of the proof.

2. There are obvious limitations of the EM algorithm. Describe two potential con-

cerns with this method.
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Problem 1. An EM algorithm for detecting frequency change points in

a binary sequence. We observe a sequence of binary data that consists of

n observations, y = (y1, . . . , yn), yi ∈ {0, 1}. The n binary variables correspond to

independent signals from a random source, for which the frequency of 1’s is unknown

and may be modified at an unknown time point from θ1 to θ2. For example, the

sequence of observations can be as follows

y = 01100 . . . 00110‖1110011 . . . 1100111

In this representation, the ‖ symbol indicates that a change occurred at position z, that

can represent any point between 2 et n. for all i < z, the frequency of 1’s is θ1, and

for i ≥ z the frequency of 1’s is θ2. By convention, z = 1 corresponds to the situation

where no change occurs. In this case, the frequency of 1’s is constant, and it is equal

to θ2.

Challenge and evaluation rule. Download the data from the following URL:

http://membres-timc.imag.fr/Olivier.Francois/sequence.data

The data consists of a sequence of 321 binary items. The objective of the challenge

is to provide a list of (one or more) change points with the following information

• Most likely change point position, z, in the range [1, 321].

• Lower and upper values zl and zu, such that p(z ∈ [zl, zu]) = 0.75.

• Estimates of frequencies θ1 and θ2 before and after z.

• Number of iterations of the EM algorithm.

The output file must be formatted as follows

number position lower upper theta1 theta2 iter

1 42 35 56 .72 .43 13

2

3
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A README file including comments and describing the options used when analyzing

the data is required. The results will be evaluated on the basis of the 1) number of

correct detections, 2) evaluation of uncertainty on each correctly detected position (ie,

correctness of the difference (upper - lower)).

Derivation of an EM algorithm. We use the following notations

θ = (θ1, θ2).

For z = 2, . . . , n, we have

p(yi|z, θ) = θyi1 (1− θ1)1−yi i = 1, . . . , z − 1

et

p(yi|z, θ) = θyi2 (1− θ2)1−yi i = z, . . . , n.

A priori, we assume that the change point z is sampled from the uniform distribution

p(z) =
1

n
, z = 1, . . . , n.

We call this distribution the prior distribution on z. The goal of this problem is to

propose an EM algorithm for estimating the model parameter θ and for evaluating the

conditional probabilities p(z|y) for all z = 1, . . . , n.

1. Let z = 1. Give a formula for the probability p(y|z, θ). Same question for z > 1.

2. Show that, for z > 1, we have

log p(y|z, θ) = log θ1

(
z−1∑
i=1

yi

)
+ log(1− θ1)

(
z − 1−

z−1∑
i=1

yi

)

+ log θ2

(
n∑
i=z

yi

)
+ log(1− θ2)

(
n− z + 1−

n∑
i=z

yi

)

3. Suppose θ1 and θ2 are known. Using the Bayes formula, show that

∀z = 2, . . . , n, R(z) =
p(z|y, θ)

p(z = 1|y, θ)
=

z−1∏
j=1

p(yj|θ1, z)
p(yj|θ2, z = 1)
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4. Show that there is a relationship between R(z) and R(z− 1) for all z = 2, . . . , n,

and propose an algorithm for computing p(z|y) for all z = 1, . . . , n.

5. Propose an algorithm for computing the expected value of
∑z−1

i=1 yi

E1 = E[
z−1∑
i=1

yi|θ0].

by averaging over all values of z. Apply the same approach to the 3 other quan-

tities found in question 2. What is the complexity of the algorithm?

6. Describe the EM algorithm for estimating θ from y.

7. Generate simulated data for known values of θ and z. Apply the EM algorithm

to the simulated data, and evaluate the convergence of the algorithm by testing

several values of θ0. Plot histograms for p(z|y) using plot(.,type =’h’).

8. Discuss the choice of a uniform prior distribution for z. How could the EM

algorithm be modified to account for informative prior distributions?
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Problem 2. Gaussian mixture models. Consider a population P consisting

of 2 subpopulations P0 and P1 with equal sizes. We sample n individuals from P , but

their origins are not observed. A quantity yi is measured for each individual. Grouping

individuals based on the observations is called an unsupervised clustering task.

In order to group individuals into clusters, we assume that subpopulation labels are

missing data. We want to estimate the cluster localization m0 and m1 for each group

and the proportion of individuals sampled from subpopulation P0 or P1. In addition,

we want to estimate the probability that each individual is sampled from population

P1 (or P0).

Let θ = (m0,m1). We define a Gaussian mixture model as follows

∀yi ∈ R, p(yi|θ) = pp1(yi|θ) + qp0(yi|θ)

where pk(yi|θ) = N (yi|mk, σ
2 = 1) is the Gaussian density function, for k = 0, 1. The

probability p is the probability of sampling from P1, and q = 1− p.

1. To begin, we consider that the variance σ2 is a known parameter equal to σ2 =

1, and p = 1/2. For all individuals, we consider hidden variables zi ∈ {0, 1}

representing their unobserved label of source population. Show that

p(yi|θ) = p(zi = 1)p(yi|zi = 1, θ) + p(zi = 0)p(yi|zi = 0, θ) ,

where p(zi = 1) = 1/2.

2. Write a computer program for drawing samples from p(yi|θ) of size n = 200

(for fixed values of (p,m0,m1). Check your the program is correct by drawing a

histogram of the simulated data.

3. Considering the unobserved vector z = (z1, . . . , zn), show that

log p(y, z|θ) = −1

2

n∑
i=1

(1− zi)(yi −m0)
2 + zi(yi −m1)

2 + Cn

4. Let n1 =
∑n

i=1 zi and n0 = n−n1. Show that the above expression is maximized

for

m̂1 =
1

n1

n∑
i=1

yizi m̂0 =
1

n0

n∑
i=1

yi(1− zi) (?)
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5. We suppose p(zi = 1) = 1/2. Show that the conditional probability of zi = 1

given yi and θ0 is equal to

p(zi = 1|yi, θ0) =
exp(−(yi −m0

1)
2/2)

exp(−(yi −m0
0)

2/2) + exp(−(yi −m0
1)

2/2)
.

6. In equations (?), replace the hidden variable zi by p(zi = 1|yiθ0), and show that

this operation corresponds to writing the EM algorithm for estimating θ.

7. Write the EM algorithm in the R programming language. Generate simulated

data that for known values of θ and z. Apply the EM algorithm to the simulated

data, and evaluate the convergence of the algorithm by testing several initial

values θ0.

8. Extend the EM algorithm to the case where the variance σ2 is unknown, and p

is arbitrary. Extend it further to the case where the two classes have unequal

(unknown) variances, and p is arbitrary.

9. Download the data from the following URL:

http://membres-timc.imag.fr/Olivier.Francois/data2.txt

10. Apply the EM algorithm to the data. Evaluate the convergence of the algorithm

by testing several initial values of θ0. Report estimates for θ1 and θ2, and display

p(z|y) by using the barplot command to visualize the probability matrix of size

n× 2.

11. Install the R package mclust from the CRAN web site. Look at the different op-

tions of the Mclust function (models and outputs), and run the Mclust command

on the data for G = 1 to 5.

12. Find a definition of the Bayesian Information Criterion (BIC). Discuss the choice

of a model for the data using the BIC.
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Challenge and evaluation rule. Download the data from the following URL:

http://membres-timc.imag.fr/Olivier.Francois/matrix.data

The data consists of a matrix of 482 rows and 3083 columns with entries in 0, 1, 2. 

The objective of the challenge is to evaluate the number of clusters (for rows) in the 

data set and to assign a cluster label to each row. The result is a list of 482 cluster 

labels, one for each row. The output file must be contain the resulting list formatted 

as a sequence of integer values separated by space characters as follows

12 12 1 6 7 6 6 3 11 11 ...

A README file describing the options used when analyzing the data is required. The 

results will be evaluated on the basis of the confusion matrix and the number of wrongly 

classified rows.

Important comments: Use a dimension reduction algorithm such as principal component 

analysis or multidimensional scaling to reduce the dimension of the data set before 

applying model-based clustering algorithms. Then, prefer using the Mclust 

algorithm rather than reprogramming your own EM method.

8



Problem 3. ABO groups and genetics

A geneticist studies genotypes at the ABO locus (alleles A, B, O) for blood samples

from n individuals, and gets observations for phenotypes for each individual (blood

groups). Four distinct phenotypes can be observed

• type A corresponds to genotypes A/A and A/O (sample size nA),

• type B corresponds to genotypes B/B and B/O (sample size nB),

• type AB corresponds to genotype A/B (sample size nAB),

• type O corresponds to genotype O/O (sample size nO)

where we suppose that A/O and O/A are a same genotype (the same for B), and

n = nA + nB + nAB + nO.

We say that types A et B are codominants, whereas type O is recessive and is observed

only if an individual carries to copies of allele O. We want to estimate the frequency

pA of allele A in the sampled population.

1. We first assume that all allele frequencies are known parameters. Using the

Hardy-Weinberg principle, show that the expected number of genotypes A/A in

a sample of size n is equal to

nA/A = nA
p2A

p2A + 2pApO
.

2. Find a similar equation for nA/O.

3. Suppose we know nA/A, nA/O, nAB. Give an estimate p̂A of the frequency pA

4. Use a circular (iterative) argument to compute an estimate p̂A from the data.

5. Write an EM algorithm for estimating all allele frequencies.

6. Application: We observe n = 521 cases of peptic ulcer disease, for which nA =

186, nB = 38, nAB = 13 et nO = 284. Find estimates for pA, pB et pO.
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