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2Université Grenoble-Alpes, Centre National de la Recherche Scientifique, GIPSA-lab UMR

5216, Grenoble, 38042, France.

Running Title: TESS3: Inference of Spatial Population Structure

Keywords: Inference of Population Structure, Geographic Variation, Genome Scans for Selection,

Control of False Discoveries.

Corresponding Author: Olivier François
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Abstract

Geography and landscape are important determinants of genetic variation in natural popu-

lations, and several ancestry estimation methods have been proposed to investigate population

structure using genetic and geographic data simultaneously. Those approaches are often based on

computer-intensive stochastic simulations, and do not scale with the dimensions of the data sets

generated by high-throughput sequencing technologies. There is a growing demand for faster al-

gorithms able to analyze genome-wide patterns of population genetic variation in their geographic

context.

In this study, we present TESS3, a major update of the spatial ancestry estimation program

TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates

of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than

the Bayesian version. In addition, the TESS3 program can be used to perform genome scans

for selection, and separate adaptive from non-adaptive genetic variation using ancestral allele

frequency differentiation tests. The main features of TESS3 are illustrated using simulated data

and analyzing genomic data from European lines of the plant species Arabidopsis thaliana.
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1 Introduction

Since the early developments of population genetics, geography has been recognized as one of

the major determinants of genetic variation in natural populations (Wright, 1943; Malécot, 1948;

Kimura & Weiss, 1964; Cavalli-Sforza et al , 1994; Epperson, 2003). For these populations, spatial

patterns of genetic variation can be influenced by landscape barriers, geographical distances and

by the processes of divergence and admixture resulting from the colonization of new areas. In ad-

dition, analyzing spatial patterns of genetic variation has been a long-standing goal of evolutionary

biogeography, molecular ecology, landscape genetics, and conservation biology (Segelbacher et al ,

2010; Manel et al , 2010).

Statistical approaches to analyze spatial patterns of genetic variation often rely on the inference

of population genetic structure from multi-locus genotype data, which is commonly performed

using the Bayesian approach implemented in the computer program STRUCTURE (Pritchard et al ,

2000). Assuming K unobserved ancestral gene pools, STRUCTURE computes allele frequencies

in each pool, and estimates individual ancestry coefficients representing the proportion of an

individual genome that originates from each pool. Using STRUCTURE, ancestry coefficients are

estimated without prior knowledge on geographic proximity among individuals.

The approach implemented in STRUCTURE has been substantially improved by a number of

approaches that include spatial proximity information based on individual geographic coordinates

(reviewed by François & Durand (2010)). Among those spatially explicit approaches, the computer

program TESS is one of the most frequently used algorithms (Chen et al , 2007; François et al ,

2006). In the TESS model, ancestry proportions are continuously distributed over geographic

space, and the parameters that specify the shape of the clines are estimated from the genetic and

the geographic data. Using geographic information, TESS provides better estimates of ancestry

coefficients than STRUCTURE when the levels of ancestral population divergence are low (Durand

et al. 2009).

The Bayesian approaches implemented in STRUCTURE and TESS rely on Markov Chain Monte

Carlo algorithms. Monte Carlo algorithms are based on computer intensive stochastic simulations,

and have the advantage of sampling the posterior distribution of the model parameters. However
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the application of stochastic algorithms can be difficult when the data include more than a few

hundreds of individuals or a few thousands of allelic markers. With the availability of next gener-

ation sequencing data, there is a need to analyze genotypic matrices that represent thousands of

individuals and hundreds of thousands of markers. While fast versions of STRUCTURE have already

been proposed (Raj et al , 2014; Frichot et al , 2014; Alexander & Lange, 2011; Wollstein & Lao,

2015), developing fast and accurate estimation algorithms for ancestry coefficients in a geographic

framework remains an important computational challenge.

In this study, we present a spatially explicit algorithm that provides fast estimation of ancestry

coefficients with accuracy comparable to TESS 2.3 (Durand et al , 2009). The new algorithms

are based on least-squares optimization and on geographically constrained non-negative matrix

factorization (Cai et al , 2011; Frichot et al , 2014). These improvements of TESS are implemented

in the computer program TESS3. We show that TESS3 is substantially faster than TESS 2.3, with

an increase in computational speed of one or two orders of magnitude. In addition, we show

that ancestral allele frequencies are correctly estimated, and we illustrate the use of the TESS3

program to perform genome scans for selection based on ancestral allele frequency differentiation.

To illustrate our approach, TESS3 was applied to genomic data from European lines of the model

species Arabidopsis thaliana for which an individual-based sampling design was available (Atwell

et al , 2010).

2 Materials and Methods

The computer program TESS3 computes ancestry estimates for large genotypic matrices using the

geographic coordinates of sampled individuals. The program also returns locus-specific estimates

of ancestral genotypic frequencies, and computes locus-specific estimates of a population-based

differentiation statistic that can be used in genome scans for adaptive alleles. The TESS3 program

is particularly suited to the analysis of large genomic data sets, for which the number of loci (L)

ranges between thousands to hundreds of thousands genetic polymorphisms and the number of

individuals (n) ranges between hundreds to thousands individuals.
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Input data. TESS3 requires that the data consists of n multi-locus genotypes and two geographic

coordinates for each genotype. A genotypic matrix, X, records allelic data for each individual (i)

and each locus (`). With data representing single nucleotide polymorphisms (SNPs), the genotypic

matrix records the number of derived or mutant alleles at each locus. Considering autosomes in

a diploid organism, the genotype at locus ` corresponds to the number of derived alleles at this

locus, which is encoded as an integer number 0, 1 or 2. For SNPs, the geno format is accepted by

the program, which can also process other types of allelic data, such as short tandem repeats or

amplified fragment length polymorphisms. Geographic coordinates can be expressed using several

coordinate systems, for example longitude and latitude, and they are provided to the software in

a separate input file.

Geographically constrained least-squares estimates of ancestry coefficients. Similarly

to TESS 2.3 or STRUCTURE, TESS3 supposes that the genetic data originate from the admixture of

K ancestral populations, where K is unknown. TESS3 estimates a Q-matrix, Q = (Qik), which

represents the individual ancestry coefficients (n×K dimensions), and a G-matrix, G = (Gk`(j)),

which represents the ancestral genotypic frequencies. The dimension of G is equal to K× (p+ 1)L

where p is the ploidy of the studied organism genome. The ancestry coefficient Qik is the fraction

of individual i’s genome that originates from the ancestral population k, and the coefficient Gk`(j)

represents the frequency of genotype j at locus ` in population k.

The principle underlying the TESS3 algorithm differs from the likelihood methods implemented

in STRUCTURE or in TESS 2.3, and it can be considered to be model-free. The main idea is that the

probability that an individual i carries the genotype j at locus ` is determined by the law of total

probability

P (Xi` = j) =

K∑
k=1

QikGk`(j) .

The above formula establishes that each individual genotype is sampled from K pools of

ancestral genotypes, and that the sampling probabilities correspond to their admixture coefficients.

The formula is equivalent to the factorization of the genotypic probability matrix, P , using the

matrices Q and G as factors (Frichot et al , 2014). In the TESS3 algorithm, probabilities are
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replaced by zero/one values depending on the absence or the presence of each genotype at each

locus, and the resulting matrix is denoted by X̃. Estimates of Q and G are obtained by factorizing

X̃ as follows X̃ = Q̂Ĝ. Matrix factorization is performed according to a least-squares minimization

algorithm (see Appendix). During the miminization process, spatial constraints are introduced to

ensure that individuals that are geographically close to each other are more likely to share the same

ancestral genotypes than individuals that are far apart. A regularization parameter, α, controls the

regularity of ancestry estimates over the geographic space. Large values of α imply that ancestry

coefficients have similar values for nearby individuals, whereas small values produce results close

to STRUCTURE. The least-squares method leads to algorithms that are substantially faster than

the Bayesian algorithms implemented in other programs. In addition, the approach makes no

assumptions about linkage or Hardy-Weinberg equilibrium (HWE). The above framework is thus

appropriate to deal with departures from HWE created by inbreeding or geographically restricted

mating.

Number of populations. In TESS3, the number of ancestral populations, K, is chosen after

the evaluation of a cross-entropy criterion for each K (Frichot et al , 2014). The choice of K is then

based on a cross-validation method that partitions the genotypic matrix entries into a training set

and a test set in which 5% of all entries are masked to the algorithm. The cross-entropy criterion

compares the genotypic frequencies predicted from the training set to those computed from the

test set at each locus. Smaller values of the criterion often indicate better estimates for TESS3.

In practice, the best choice for K corresponds to a plateau in the cross-entropy plot (Frichot &

François, 2015)..

Outlier locus tests. In addition to the inference of spatial population structure, TESS3 can

perform genome scans for selection when the program is applied to large genomic data sets.

More specifically, TESS3 uses the ancestral genotype frequency matrix, G, to derive the allele

frequencies in the K ancestral populations. Then the algorithm evaluates a locus-specific FST-

statistic based on the estimated ancestral allele frequencies. Using standard population genetic

theory, FST-statistics can be transformed into squared z-scores, and p-values can be computed
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using a chi-square distribution with K − 1 degrees of freedom (Weir, 1996). To correct for the

test inflation statistic due to neutral population structure, the z-scores were recalibrated using

estimates of the inflation factor. Here, inflation factors were determined using an “empirical-

null hypothesis” approach. The values of the inflation factor were determined graphically on the

basis on quantile-quantile plots of p-values. This approach is less conservative than the method

based on the median of the chi-square distribution with K − 1 degrees of freedom (Devlin &

Roeder, 1999; Frichot & François, 2015). Multiple testing issues were addressed by applying the

Benjamini-Hochberg algorithm to the recalibrated p-values (Benjamini & Hochberg, 1995).

Simulated data sets and program runs. We created simulated data sets containing 200

admixed genotypes with levels of ancestry that varied continuously across geographic space. To

generate the data, we used the computer program MS to perform coalescent simulations of neutral

and outlier SNPs under island models with two populations (Hudson, 2002). One hundred geno-

types were sampled from each source population, and admixed genotypes were created according

to a longitudinal gradient of ancestry (Durand et al , 2009; François & Durand, 2010). Individ-

uals at each extreme of the longitunal range were representative of ancestral populations, while

individuals at the center of the range shared intermediate levels of ancestry in the two source

populations. The number of loci was varied in the range L = 1k-50k SNPs.

Our first series of simulations considered selectively neutral SNPs and used migration param-

eters, M = 4mNe, between M = 0.01 and M = 10. The population differentiation statistic,

FST, ranged from 0.007 to 0.42. Our second series of simulations included a proportion of outlier

SNPs equal to 5%. Outlier loci were generated using two values of the effective migration rate

4msN = 0.1 and 4msN = 1. In simulations with outlier loci, the neutral migration rate was set

to the value 4mN = 20. The justification for using neutral migration-drift equilibrium models

for simulating selection is that loci with selection have an effectively reduced migration rate, as

compared to the neutral migration m in migration-selection-drift equilibrium models (Bazin et al ,

2010).

The simulated data were used to compare TESS3 estimates to those of TESS 2.3 (Durand

et al , 2009). The number of ancestral populations ranged from K = 1 to K = 6. Each run was
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replicated five times for each computer program. The number of cycles in the Markov chain Monte

Carlo algorithm of TESS 2.3 was set to 1,000, and the optimal number of ancestral population

was determined using the deviance information criterion. All other parameters were set to their

default values. Statistical errors were measured as root mean squared errors (RMSE) between the

estimated Q-matrix and the matrix of coefficients (Q0) that were used to generate the data

RMSE =

(
1

nK

n∑
i=1

K∑
k=1

(Qik −Q0
ik)2

)1/2

.

A similar RMSE criterion was defined for comparing the estimates of G matrices obtained from

TESS3 or TESS 2.3 to the estimates of the ancestral genotypic frequency matrix resulting from the

coalescent simulations.

Arabidopsis thaliana data. We applied TESS3 to genomic data from 170 European lines of the

model plant Arabidopsis thaliana genotyped for 216k SNPs (Atwell et al , 2010). For these data,

we determined the number of ancestral populations using the cross-entropy criterion, and we com-

puted ancestry estimates for the sample. The results were projected onto a map of the European

continent using a raster file and R graphic functions (Jay et al , 2012). We also used TESS3 to

perform a genome scan for selection on chromosome 5 using K = 3 ancestral populations (54k

SNPs).

3 Results

Comparison of ancestry estimates. We used computer simulations of admixed populations

to evaluate the ability of TESS3 to reproduce the ancestry estimates of TESS 2.3 using known

individual ancestry proportions from two ancestral gene pools. Simulating 2k unlinked SNPs, we

varied the level of ancestral population differentiation, measured by FST, to create difficult as well

as easier data sets. For all data sets, the information criterion of each version of TESS led to K = 2

clusters. Statistical errors, measured by RMSEs for estimated Q and G matrices, ranged between

0.02 and 0.15 (Figure 1). Statistical errors increased as the levels of differentiation between the

two source populations decreased, but they remained in an acceptable range for values of FST

greater than 0.016. Overall, the statistical performances were of the same order for both versions
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of TESS.

Run-time analysis. Next we compared the run-times of TESS3 and TESS 2.3 for increasing

values of the number of ancestral populations and increasing numbers of loci. For TESS 2.3 the

total number of cycles in the MCMC algorithm was set to 1,000, a value for which the Monte-Carlo

sampler reached its equilibrium state. Run-times were averaged over distinct random seed values

for each K and number of loci. For both algorithms, the run-times increased with the number of

loci and with the number of ancestral populations (Figure 2). For L = 10k loci, TESS3 and TESS

2.3 runs took less than 6 minutes on an Intel Xeon 2.40 GHz CPU. With L = 50k loci and K = 5

ancestral populations, TESS 2.3 took on average 30 minutes to complete a single run, whereas

the TESS3 average run-time was about 4 minutes.

Outlier locus tests. We evaluated the capacity of TESS3 to detect outlier loci on simulated

data containing 5% of outlier loci. For each locus, we performed a population differentiation test

based on the estimated ancestral allele frequencies. Although the ratios ms/m took large values,

the probability distributions of FST statistics computed from neutral and selected ancestral allele

frequencies overlapped substantially. Thus the power of neutrality tests were expected to be low.

For a data set with ms/m = 0.005, the estimate of the genomic inflation factor was equal to

λ = 4.4. For a data set with ms/m = 0.05 this value was equal to λ = 10.0. After correction of

the test statistic, the observed levels of the false discovery rate were close to their expected values.

The power to reject the null hypothesis was lower when the intensity of selection was low (Table

1). For an expected FDR of q = 0.1, the power of the test was approximately equal to 60% for

the higher selection rate and it was equal to 30% for the lower selection rate. The power values

were close to those obtained when we applied outlier tests to the data before admixture. This

experiment showed that the power to reject neutrality in continuous populations was similar to the

power of traditional population differentiation tests applied to the discrete (ancestral) population

data.

Biological data analysis. We applied TESS3 to a genomic data set of 170 European lines of

Arabidopsis thaliana (216k SNPs). The cross-entropy curve exhibited a change in curvature for
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K = 3-4 clusters. For K = 3, the western cluster grouped all lines from the British Isles, France

and Iberia. The eastern cluster grouped all lines from Central, Eastern Europe and Southern

Sweden. Fourteen northern Scandinavian accessions were grouped into a separate population

(Figure 3A). Those results were consistent with those obtained with TESS 2.3. The average run-

time of TESS3 was about 5 minutes whereas each TESS 2.3 run took about 2 hours. Then we

performed a genome scan for selection based on population differentiation in the three ancestral

populations detected by TESS3. The genomic inflation factor was equal to λ = 15.0. The histogram

of corrected p-values provided evidence that confounding errors were correctly removed (Figure

4A). The Manhattan plot exhibited islands of strong differentiation around positions 8,510 kb,

6,944 kb, 6,969 kb and 26,155 kb in the chromosome 5 (Figure 3B). The top hits in the candidate

list corresponded to genic SNPs. In particular, we discovered genes involved in defense response

(VSP1), and in photoperiodism, flowering and root development (WAV2) (Mochizuki et al , 2005).

The derived allele in the VSP1 gene was present at high frequency in Eastern Europe and it was

almost absent from Western Europe and Northern Scandinavia. The derived allele in the WAV2

gene was present at high frequency in the Iberian peninsula and at low frequency in Eastern

Europe and Northern Scandinavia (Figure 4B).

4 Discussion

A fundamental objective of evolutionary biology is the evaluation of the distribution of genetic

variation among populations in geographic space. During the last few years, high-throughput se-

quencing technologies have allowed population geneticists to make fast progress in this direction.

The access to extensive data have opened the door to a deeper understanding of the spatial distri-

bution of adaptive and nonadaptive genetic variation in model and non-model organisms (Manel

et al , 2010). This transition from population genetics to population and ecological genomics is

accompanied by a revolution of the principles and methods used to analyze the influence of land-

scape features on genetic variation. This revolution is made possible thanks to the availability of

fast computing programs than can deal with high dimension and heterogeneity in the data.

By combining matrix factorization and spatial statistical methods, the computer program

TESS3 enabled fast analysis of geographic and genome-wide patterns of genetic variation from
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large genomic data sets. In coalescent simulations of individuals with known ancestry, TESS3

produced accurate estimates of ancestry coefficients and ancestral allele frequencies. TESS3 results

were statistically similar to those obtained with the Bayesian clustering program TESS 2.3, but

TESS3 was about 30 times faster than TESS 2.3 when used with K = 5 ancestral populations

and 50k binary loci. Though Bayesian approaches might be preferable for genotypic matrices of

moderate dimensions, TESS3 generally outperformed TESS 2.3 when more than a few thousands of

markers were used.

A novelty of TESS3 is the identification of outlier loci from the genotypic matrix. An important

property of TESS3 outlier tests is that they do not require predefined populations, and that can be

applied to individual sampling designs. Based on the estimations of the ancestral allele frequency

matrix, the TESS3 algorithm computes a population differentiation statistic estimating a fixation

index for each locus. If local adaptation favors a particular allele in some ancestral populations,

the population differentiation statistic at that locus will be larger than at loci that are selectively

neutral. Outliers in the distribution of the population differentiation statistic are usually con-

sidered as loci potentially targeted by local selection (Holsinger & Weir, 2009). In addition, the

program output allows population geneticists to determine candidate loci based on classical FDR

control algorithms.

The study of European lines of A. thaliana illustrated the main steps of analysis using TESS3.

These steps can be summarized as follows: 1) Identifying the number of clusters using the cross-

validation criterion, by launching multiple runs of the program for each value of K, 2) Display-

ing maps of ancestry coefficients using R scripts provided with the program, 3) Performing a

genome scan for selection based on ancestral allele frequency differentiation statistics. Results

for A. thaliana suggested that clinal variation occurs along an East-West gradient separating

two ancestral populations in Central Europe. Those results were in very good agreement with

previous findings using TESS 2.3, although these findings were obtained with a different set of

markers (François et al , 2008). A genome scan for selection revealed contrasted patterns among

European lines of A. thaliana and provided evidence of a substantial role for natural selection in

shaping the genome-wide variation of the plant species in Europe.
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To conclude, the computer program TESS3 provides a major update of the TESS program

enabling rapid ancestry coefficient estimation and genome scans for adaptive alleles. While pre-

serving the accuracy of TESS 2.3, the least-squares algorithms of TESS3 ran substantially faster

than the Bayesian algorithms of TESS when analyzing large population genomic data sets.

Data Accessibility

Installing TESS3. Source codes, installation files and program documentation are available from

Github (https://github.com/cayek/TESS3).

The Atwell et al. (2010) data used in this study are publicly available from the following link:

https://github.com/Gregor-Mendel-Institute/atpolydb
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Appendix

This section provides a detailed description of the TESS3 algorithm. The first step of the algorithm

builds a nearest-neighbor graph based on the geographic coordinates of the sampling sites. The

number of neighbors in the graph was set to represent 5% of total connections. Then, the program

runs a least-squares minimization algorithm. In this approach, the estimates of Q and G are

obtained after solving the following constrained least-squares problem (Cai et al , 2011)

(Q̂, Ĝ) = arg min LS(Q,G) ,

where

LS(Q,G) = ‖X̃ −QG‖2F + α
∑
si∼sj

wij‖Qi. −Qj.‖2 , (1)

and Q and G are non-negative matrices such that, for all i and `, we have

K∑
k=1

Qik = 1

p∑
j=0

Gi`(j) = 1 .

In this equation, ‖M‖F denotes the Frobenius norm of a matrix M , ‖V ‖ is the Euclidean norm of

a vector V , α is a non-negative regularization parameter. The summation on the right-hand side

of the second term runs over all pairs of sites, si ∼ sj , sharing an edge in the nearest-neighbor

graph. The quantity wij is a weight that decreases with geographic distance between sampling

sites as follows

wij = exp(−d(si, sj)
2/d̄2) , (2)

where d is the Euclidean distance, and d̄ is the average distance computed over the neighboring

sites in the sample. More specifically, the weight of an edge in the nearest-neighbor graph is related

to the Laplace-Beltrami operator on a manifold (Belkin & Niyogi, 2003). In the algorithm, the

regularization parameter α is equal to c× nL(p+ 1)/
∑
wij . The default value of c is 0.1%.

Least squares minimization is performed using the Alternating Non-negativity-constrained

Least Squares (ANLS) algorithm with the active set (AS) method following the approach used in
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the computer program sNMF (Frichot et al , 2014; Kim & Park, 2011). The ANLS-AS algorithm

starts with the initialization of the Q matrix, and then computes a non-negative matrix G that

minimizes the quantity

LS1(G) = ‖X −QG‖2F .

The obtained solution is normalized so that its entries satisfy the probabilistic constraints for

genotypic frequencies. Given G, the Q-matrix is computed after minimizing the following quantity

LS2(Q) =

∣∣∣∣∣∣∣∣( Vec(X̃T )
0

)
−
(

Id⊗GT
√
α Γ⊗ Id

)
Vec(QT )

∣∣∣∣∣∣∣∣2
F

,

where Vec(X̃) denotes the vectorization of the matrix X̃ formed by stacking the columns of X̃

into a single column vector, Γ is the Cholesky decomposition of the graph Laplacian associated

with the weights of the graph (Chung, 1997), Id is the identity matrix, and ⊗ is a symbol for the

Kronecker product. Iterations are stopped when the relative difference between two successive

values of LS(Q,G) is lower than a tolerance threshold of ε. The default value for ε equals 10−7.
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5 Figures and Tables

Figure 1. Statistical errors of TESS3 and TESS 2.3 estimates. Computer simulations of

admixed populations using known individual ancestry proportions from two ancestral gene pools.

A) RMSEs of G estimates as a function of the level of ancestral population differentiation (FST).

B) RMSEs of Q estimates as a function of the level of ancestral population differentiation (FST).

Figure 2. Run-times for TESS3 and TESS 2.3. The number of ancestral population ranged

between K = 1 and 6. Run-times were expressed in unit of minutes.

Figure 3. Results of the Arabidopsis thaliana data analysis with TESS3. A) Geographic

maps of ancestry coefficients using K = 3 ancestral populations. B) Manhattan plot of log10(p-

values) for the plant chromosome 5. The horizontal line corresponds to an expected FDR value of

q = 10−30.

Figure 4. Candidate SNPs from a genome scan ofA. thaliana chromosome 5. A) His-

togram of adjusted p-values. B) Spatial distribution of allele frequency for two top-hit SNPs

located in the VSP1 and WAV2 genes.

Table1. Power to reject neutrality of TESS3 outlier tests for two simulated data sets.
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Figure 1: Statistical errors of TESS3 and TESS 2.3 estimates. Computer simulations of admixed
populations using known individual ancestry proportions from two ancestral gene pools. A) RM-
SEs of G estimates as a function of the level of ancestral population differentiation (FST). B)
RMSEs of Q estimates as a function of the level of ancestral population differentiation (FST).
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Figure 2: Run-times for TESS3 and TESS 2.3. The number of ancestral population ranged between
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Figure 3: Results of the Arabidopsis thaliana data analysis with TESS3. A) Geographic maps of
ancestry coefficients using K = 3 ancestral populations. B) Manhattan plot of log10(p-values) for
the plant chromosome 5. The horizontal line corresponds to an expected FDR value of q = 10−30.
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Figure 4: Candidate SNPs from a genome scan of the A. thaliana 5th chromosome. A) Histogram
of adjusted p-values. B) Spatial distribution of allele frequency for two top-hit SNPs located in
the VSP1 and WAV2 genes.

21



Table1. Power to reject neutrality of TESS3 outlier tests for two simulated data sets.

FDR Power
After admixture Before admixture After admixture Before admixture

0.05 0.61 0.63 0.20 0.26
0.10 0.63 0.66 0.23 0.29
0.15 0.64 0.67 0.25 0.32
0.20 0.65 0.69 0.26 0.33

Data set 1: ms/m = 0.005. Data set 2: ms/m = 0.05.
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