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APPENDIX 1. Consistency and retention indices reported in source studies (consistency index calculated from parsimony-informative char-
acters only). —, Data not available.

Consistency index Retention index

Study Reference Molecules Morphology Combined Molecules Morphology Combined

1 Aagesen and Sanso, 2003 0.82 — 0.60 0.88 — 0.72
2 Babcock et al., 2001 0.50 0.56 0.49 0.55 0.79 0.55
3 Cameron and Williams, 2003 0.51 — 0.60 0.61 — 0.60
4 Cannon and Manos, 2001 0.72 — 0.70 — — —
5 Carpenter and Wheeler, 1999 — 0.65 — — 0.85 —
6 Dabert et al., 2001 0.46 0.88 0.61 0.51 0.95 0.75
7 Damgaard and Sperling, 2001 0.41 0.61 0.42 0.47 0.84 0.53
8 Farmer and Schilling, 2002 0.73 0.77 0.74 0.76 0.58 0.65
9 Fernández et al., 2001 0.62 0.60 0.58 0.72 0.88 0.71

10 GPWG, 2001 0.38 0.30 0.38 0.55 0.69 0.56
11 Hebsgaard et al., 2004 — 0.83 — — 0.96 —
12 Littlewood et al., 1999 0.34 — 0.31 0.62 — 0.64
13 Mansano et al., 2004 0.77 — 0.72 0.81 — 0.82
14 Marvaldi et al., 2002 0.35 0.59 0.36 0.43 0.93 0.60
15 Meerow et al., 2002 0.92 0.86 0.92 0.77 0.88 0.79
16 Meerow and Snijman, 2001 0.65 0.51 0.63 0.71 0.81 0.71
17 Meier and Wiegmann, 2002 0.51 0.46 — 0.57 0.76 —
18 Michelangeli et al., 2003 0.42 0.39 0.41 0.60 0.73 0.62
19 Near et al., 2003 0.57 0.57 0.57 — — —
20 Pedersen et al., 2003 0.59 — 0.51 0.78 — 0.73
21 Renner, 1999 0.74 — 0.74 0.74 — 0.75
22 Stach and Turbeville, 2002 0.50 — 0.52 0.64 — 0.66
23 Wiegmann et al., 2002 0.68 0.83 0.68 0.78 0.98 0.84
24 Wiley et al., 1998 0.62 0.88 0.67 0.38 0.98 0.60
25 Winterton et al., 2001 0.39 0.55 0.42 0.51 0.77 0.56
26 Zrzavý, 2003 0.53 0.85 0.58 0.66 0.90 0.69
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The explosion of phylogenetic studies not only pro-
vides a clear snapshot of biodiversity, but also makes it
possible to infer how the diversity has arisen (see, for
example, Purvis and Hector, 2000; Harvey et al., 1996;
Nee et al., 1996; Mace et al., 2003). To this aim, variation
in speciation and extinction rates have been investigated
through their signatures in the shapes of phylogenetic
trees (Mooers and Heard, 1997). This issue is of great im-
portance, as fitting stochastic models to tree data would
help to understand underlying macroevolutionary pro-
cesses. Although the prevailing view is that it does not
represent phylogenies so well, the most popular model of
phylogenetic trees is a branching process introduced by
Yule, in which lineages split at random (Yule, 1924). Here

we report the study of one major database of published
phylogenies using the Yule model as well as several other
models. Our results confirm the previous observation
that the Yule model is inadequate to describe phyloge-
netic tree data. In addition, they support the hypothesis
that many trees are consistent with a simple branch split
model first considered by Aldous in 1996.

The analysis of stochastic models of phylogenetic tree
shape, which began with Yule in 1924, was revived in
the mid-1970s by the Woods Hole Group (Raup et al.,
1973; Gould et al., 1977). Their model-based approach
yielded the conclusion that lineages have varied in their
potential for diversification. As a result of their work,
much effort has recently been placed on understanding
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stochastic models of tree shape and their relationship
to phylogenetic data. Among these models, the Equal
Rate Markov (ERM, Yule) model is one of the simplest
and most-often postulated as a null hypothesis for phy-
logenetic tree shape. In the ERM model each branch has
an equal probability of splitting. Among others, Moran
(1958) and Hey (1992) have also studied processes that
share the same probability distribution of topologies as
the Yule model. A second model—Proportional to Dis-
tinguishable Arrangements (PDA)—has also received a
lot of attention. The PDA model has the property that all
tree topologies are equally likely. Although less direct
than for the ERM model, several interpretations of the
PDA model in terms of evolutionary processes have been
given in the past. For instance, Aldous (1991) found a cor-
respondence between the PDA model and the genealogy
of n species sampled from a critical branching process
(i.e., including an extinction rate). McKenzie and Steel
(2001) additionally established that explosive radiation
processes can lead to the PDA model. More recently,
Pinelis (2003) proved that multitype branching processes
with species quasi-stabilization can also yield PDA-like
trees.

One aspect of tree shape is particularly important
when testing stochastic macroevolutionary models: tree
balance. Tree balance usually refers to the topological
structure of the tree, not considering the branch lengths.
Early studies (Guyer and Slowinski, 1991; Heard, 1992;
Guyer and Slowinski, 1993) agreed that reconstructed
phylogenies were more imbalanced than was predicted
by the ERM model. However, these studies were based
on small samples of trees each of them with rather small
size. Thus the need for new large-scale studies of phy-
logenetic tree imbalance has been emphasized several
times (e.g., Aldous, 2001).

The ERM and the PDA models may both be viewed
as branching Markov processes. Branching Markov pro-
cesses are discrete recursive structures (cladograms)
specified through symmetric split distributions, i.e., con-
ditional probability distributions p(i |n) for the left sister
clade size i given the parent clade size n. As shown by
Harding (1971), the ERM model has the uniform split
distribution throughout the tree. In other words, the
probability that left sister clades contain i taxa is inde-
pendent of i , and is equal to p(i |n) = 1/(n − 1) for all
internal nodes. For the PDA model, the split distribution
is given by

p(i |n) = 1
2

(
n
i

)
ci cn−i

cn
, 1 ≤ i ≤ n − 1, (1)

where cn = (2n − 3)!! is the number of cladograms with
n tips. Aldous’ Branching (AB) model is defined by the
following distribution

p(i |n) = 1
2hn−1

n
i(n − i)

, 1 ≤ i ≤ n − 1, (2)

where hn is the nth harmonic number

hn =
n∑

i=1

1
i

, n ≥ 2. (3)

The AB model corresponds to an intermediate state (β =
−1) in a single-parameter family (beta-splitting) that en-
compasses both the ERM (β = 0) and PDA (β = −1.5)
models

p(i |n) = 1
an(β)

�(β + i + 1)�(β + n − i + 1)
�(i + 1)�(n − i + 1)

,

1 ≤ i ≤ n − 1, (4)

where �(z) is the Gamma function (see Abramowitz and
Stegun, 1970) and an(β) is a normalizing factor (Aldous,
1996). As an intermediate model, tree shape under the
AB model differs significantly from that under the ERM
and PDA models. For instance, at β = −1 the mean depth
dn of a randomly chosen taxon in an n-species tree un-
dergoes a “phase” transition. The order of dn is log n
for β > −1 (in particular in the ERM model). As β de-
creases, it undergoes a sudden change at β = −1 (AB
model), where it jumps to log2 n, and another change
for −2 < β < −1 where it jumps again to n−β−1. Aldous
(2001) also noticed that the β = −1 model produces a
better fit to some data sets that does either the Markov
or the PDA model. An attempt to describe the biologi-
cal motivation for the beta-splitting model is postponed
until the end of this Point of View.

Several measures of tree balance have been proposed
in the literature (e.g., Colless, 1982; Agapow and Purvis,
2002; Felsenstein, 2003, chapter 33). For an n-species tree,
we consider the following shape statistic

s =
n−1∑
i=1

log(Ni − 1) (5)

where the sum runs over all the internal nodes i , and
Ni represents the number of extant descendants of inter-
nal node i (clade size). A similar statistic was proposed
earlier by Chan and Moore (2002), but the logarithm
was omitted. Once the normalizing constant has been
removed, s corresponds to the logarithm of the proba-
bility of a tree in the ERM model (see Semple and Steel,
2003, 29–30). In particular, employing s in statistical tests
warrants maximal power for rejecting the ERM against
the PDA and conversely (this results from the theory of
likelihood ratios; Edwards, 1972). In addition, Fill (1996)
showed that under each model s has a Gaussian distri-
bution (for large trees) and gave asymptotic expansions
for the means and variances. Computer simulations (not
shown) suggest that Gaussian approximations are also
accurate for trees of moderate sizes. Nevertheless, our
claim is not that the statistic s is generally superior to the
previous ones. This statistic has been employed for the
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sake of convenience, and analyses based on the Colless
(1982) index have led us to the same type of results as are
described hereafter.

In this study we report a study of phylogenetic im-
balance based on one major database—TreeBASE
(http://www.treebase.org)—which serves as a
searchable, archival repository of data and scien-
tific references (Sanderson et al., 1994). In August 2005,
TreeBASE contained 2063 phylogenetic trees with sizes
ranging from 3 to 536, and 667 fully resolved binary
trees with sizes ranging from 3 to 297. Many of these
trees were rooted using one or two outgroup species.
Because the outgroup taxa might contribute to an excess
of imbalance (Heard, 1992), data were preprocessed
by using an automatic outgroup removal procedure.
This was done by identifying all trees in which one
of the subtrees descended directly from the root had
one or two taxa and removing that subtree. After the
analysis, the automatic method was checked to produce
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FIGURE 1. Histograms of the shape statistics serm after ERM standardization (serm − E[serm])/σ [serm] and density of the standard normal
distribution. The means and variances have been estimated using 1000 Monte Carlo replicates. The dark bars in the histograms correspond to
the test rejection area (P < .05). (A) Fully resolved trees from TreeBASE. (B) All trees with ERM simulation for solving polytomies.

results similar to true outgroup removal for 50 fully
resolved binary trees (see Supplementary Material,
http://systematicbiology.org). Two simulation methods
were applied in order to solve polytomies by replacing
the unresolved nodes either with ERM-like or with
PDA-like subtrees. Both methods replaced the poly-
tomic nodes by binary splits. Because there are two
distinct available choices, binary splits were simulated
according to either the ERM or PDA split distribution.
Preprocessing and data analysis were performed using
the “ape” and “apTreeshape” R packages (Paradis et al.,
2004; Bortolussi et al., 2006).

The likelihood-ratio test based on s rejected the ERM
model in 48% of fully resolved trees and in 48% of
ERM solved trees (one-sided test, P < .05, the values
were computed using a direct Monte Carlo method, 1000
replicates). Figure 1 displays the distribution of stan-
dardized shape indices together with the N(0, 1) distri-
bution predicted asymptotically by the ERM model. A
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FIGURE 2. Maximum likelihood estimates of the parameter β in the beta-splitting model. The AB model corresponds to the value β = −1. A
local regression curve and the line β = −.95 are also plotted. (A) Fully resolved trees from TreeBASE. (B) All trees with ERM model simulation
for solving polytomies.

deeper look at the data shows that tree shape undergoes
a rapid change from the smaller to the intermediate-sized
and larger trees. To investigate this transition, we per-
formed maximum likelihood parameter estimation un-
der the beta-splitting model for three sets of trees: fully
resolved, ERM solved, and PDA solved (see Supplemen-
tary Material). Figure 2 displays the estimated values β̂
for the first two data sets (third data set not shown, con-
sistent with the others). A local regression (Cleveland
et al., 1992) was performed on the estimated values.
Figure 2 shows a rapid convergence around β ≈ −0.95,
very close to the AB model value β = −1.

Table 1 reports the median and variance of the maxi-
mum likelihood estimator β̂ for intervals corresponding
to the 20th-percentiles of tree sizes. The means of β̂
were located at similar values and the variances de-
creased quickly as tree size increased. Note that the re-

sults for data within the smaller percentiles may not be
very meaningful. The automatic outgroup removal pro-
cedure may have indeed added considerable balance to
the smaller trees. The bias introduced may be particularly

TABLE 1. Median and variance estimates of the maximum likeli-
hood estimator β̂ for two datasets: a, Binary trees in TreeBASE. b, ERM-
solved trees. The intervals are based on the 20% quantiles of the tree
size distribution.

a. Binary trees
No. taxa 5–11 12–19 20–27 28–43 44–297
Median of β̂ −.45 −.83 −1.12 −1.02 −0.89
Variance of β̂ 2.97 1.52 .42 .28 .16
b. ERM-solved trees
No. taxa 5–16 17–24 25–34 35–51 52–536
Median of β̂ −.74 −.86 −.95 −.94 −.95
Variance of β̂ 2.40 1.20 .52 .39 .12
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FIGURE 3. Values of the shape statistic s as a function of the number of taxa, and the values predicted by the ERM, AB, and PDA models
for trees of size greater than 15. This graphic supports the fit of the AB model to TreeBASE data (fully resolved trees). The figure is plotted in a
log-log scale.

large in cases where the outgroups were not studied
or were removed before submission of trees to the
database.

Figure 3 displays the values of the shape statistic s
as a function of tree size, and the predictions of the
ERM, AB, and PDA models computed from Monte Carlo
replicates. In addition, we used MC replicates to esti-
mate the P-values P(S ≥ s) for every tree under the
three models. If the trees were in fact sampled from
one of these models, the P-values would have uniform
probability distribution for that model. The plots in Fig-
ure 4 demonstrates that uniform P-values occurred un-
der the AB model only. Figures 3 and 4 support the
view that the AB model fits to the TreeBASE data rather
well.

During the last decade, evolutionary biologists have
often observed an excess of imbalance from phylogenetic
data. In their review, Mooers and Heard (1997) reported
several possible explanations for this phenomenon,
including errors in molecular data, incompleteness of
trees, and bias due to approximate reconstruction meth-
ods. Such criticisms still apply to the phylogenies stored
in TreeBASE, but the use of numerous peer-reviewed en-
tries must have reduced the biases from such errors and
reconstruction methods. Incompleteness may, however,
be contributing to the trend toward extra imbalance. The
phenomenon may have been amplified in studies where
species were removed from the analysis deliberately and
selectively (see Mooers, 1995). Our main result says that
the data generally agree with a very simple probabilis-
tic model: Aldous’ Branching. However, it leaves us
with the issue of providing biological motivation for this

model. One interpretation can start from the intuition
that models with random diversification rates might be
more appropriate for describing the Tree of Life than are
models with deterministic rates. Some models of ran-
dom diversification were investigated earlier by Heard
(1996), who wrote that estimated trees from the literature
correspond to very high, perhaps even implausibly high,
levels of rate variation.

Here we will introduce a new model that quantifies the
level of rate variation between species, and that bears
strong resemblance to AB models (Equation (4)). Al-
though one explanation will be proposed, we acknowl-
edge that the interpretation of the AB model in terms
of diversification rates will remain difficult. The follow-
ing model can nevertheless suggest that AB-like data
may well be explained by stochasticity acting at the level
of diversification rates. The description starts from the
deterministic rate biased-speciation model that shares
similarities with the one introduced by Kirkpatrick and
Slatkin (1993). Following speciation, the speciation rates
of the sister species take a ratio x which is fixed for
the entire clade. Speciation rates are assigned as fol-
lows. When a species with speciation rate λ splits, one
of its descendant species is given the speciation rate λp
and the other a rate λ(1 − p) where p = x/(x + 1) (the
model can be viewed as parametrized by p rather than
by x). These rates remain in effect until the two daugh-
ter species themselves speciate. These rates may seem
unrealistic because they vanish as the continuous-time
process evolves, but they can be easily corrected without
influence on the tree topology (our only concern here).
For the same reason, the initial value of λ can be fixed to
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FIGURE 4. U-plot: quantiles of the P-values of the shape statistic
versus quantiles of the uniform distribution. The null models used to
compute the P-values are the ERM, AB, and PDA models.

one. After some calculus (see Supplementary Material),
we find that the process has split distribution given by

p(i |n) = 1
2

(
n − 2
i − 1

)
(pi−1(1 − p)n−1−i

+(1 − p)i−1 pn−1−i ), 1 ≤ i ≤ n − 1. (6)

The novelty consists of adding a second level of ran-
domness to the previous model assuming that, at each
speciation event, the speciation rate p is a nondetermin-
istic parameter with beta probability distribution

p ∼ beta(α + 1, α + 1), α > −1. (7)

Averaging over the p’s, we find that the unconditional
model is now associated to the beta-binomial (BB) split
distribution

pBB(i |n) = 1
bn(α)

�(i + α)�(n − i + α)
�(i)�(n − i)

, 1 ≤ i ≤ n − 1,

(8)

where bn(α) is a normalizing constant. A quick look at
Equation (4) suggests that although Aldous’ split dis-
tribution is very similar to Equation (8), the BB model
gives strictly different clade split distributions. For α = 0,
the ERM model (β = 0) is recovered by Equation (8),
whereas α = −1 corresponds to the comb tree (β = −2).
The connection between the BB model and the AB model
can be sketched as follows. For β in the range (−1, ∞)
the Beta splitting and BB families both rely on a bino-
mial split distribution having its parameter p sampled
from the beta density. However, the binomial distribu-
tion bin(n, p) gives positive weights to 0 and n whereas
a split distribution must be over the set {1, . . . , n − 1}.
Aldous’ models consider the conditional distribution re-
jecting the two extreme values 0 and n. The BB model
merely adds 1 to bin(n − 2, p) samples, and hence pro-
duces a slightly different result. Nevertheless, the density
curves for fixed p give strong evidence that the trajecto-
ries of the BB model come very close to the beta-splitting
trajectories in the space of probability models on tree
structures. For β = −1, there exist values of α for which
the BB model approximates the AB model very accu-
rately. Further details can be found in the Supplementary
Material.

The results presented in this study may weaken the
conclusions of previous works that assumes uniform
branch split models for the Tree of Life and may hence
limit the impact of theoretical predictions about evo-
lutionary history that were made under such models.
Structural parameters of the branching topology of the
Tree of Life may indeed differ considerably. These re-
sults have been confirmed by a simultaneous study of
the same data by D. Ford using others models (Ford,
2005). Our results suggest that alternative models with
greater levels of tree imbalance than the ERM model
may be more appropriate in further studies of large
trees (e.g., AB model, nondeterministic speciation rates).
Gould et al. (1977) wrote ”How different then is the
world from the stochastic system? . . . The answer would
seem to be not very.” The results presented here suggest
that the world is not very different from the stochas-
tic system as long as the right stochastic system is
considered.
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The Supplementary Material is available from the Sys-
tematic Biology website: http://systematicbiology.org.
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