
IN APPLIED GENETIC EPIDEMIOLOGY

   

 
Correcting principal component maps for effects of spatial autocorrelation
in population genetic data

  Eric Frichot, Sean D Schoville, Guillaume Bouchard and Olivier Francois

Journal Name: Frontiers in Genetics

ISSN: 1664-8021

Article type: Original Research Article

Received on: 21 Aug 2012

Accepted on: 29 Oct 2012

Provisional PDF published on: 29 Oct 2012

Frontiers website link: www.frontiersin.org

Citation: Frichot E, Schoville SD, Bouchard G and Francois O(2012)
Correcting principal component maps for effects of spatial
autocorrelation in population genetic data. 3:254.
doi:10.3389/fgene.2012.00254

Article URL: http://www.frontiersin.org/Journal/Abstract.aspx?s=1265&
name=applied%20genetic%20epidemiology&ART_DOI=10.3389
/fgene.2012.00254

(If clicking on the link doesn't work, try copying and pasting it into your browser.)

Copyright statement: © 2012 Frichot, Schoville, Bouchard and Francois. This is an
open-access article distributed under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in other forums, provided the original authors and
source are credited and subject to any copyright notices
concerning any third-party graphics etc.

 
This Provisional PDF corresponds to the article as it appeared upon acceptance, after rigorous

peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon.

 

file:///C:/inetpub/wwwroot/FrontiersWebSite/FrontiersTemp/ProvisionalPDF///www.frontiersin.org
file:///C:/inetpub/wwwroot/FrontiersWebSite/FrontiersTemp/ProvisionalPDF///www.frontiersin.org
http://www.frontiersin.org/Journal/Abstract.aspx?s=1265&name=applied%20genetic%20epidemiology&ART_DOI=10.3389/fgene.2012.00254
http://www.frontiersin.org/Journal/Abstract.aspx?s=1265&name=applied%20genetic%20epidemiology&ART_DOI=10.3389/fgene.2012.00254
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Correcting principal component maps for effects of spatial1

autocorrelation in population genetic data2
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Abstract7

In many species, spatial genetic variation displays patterns of “isolation-8
by-distance”. Characterized by locally correlated allele frequencies, these pat-9
terns are known to create periodic shapes in geographic maps of principal10
components which confound signatures of specific migration events and in-11
fluence interpretations of principal component analyses (PCA). In this study,12
we introduced models combining probabilistic PCA and kriging models to in-13
fer population genetic structure from genetic data while correcting for effects14
generated by spatial autocorrelation. The corresponding algorithms are based15
on singular value decomposition and low rank approximation of the genotypic16
data. As their complexity is close to that of PCA, these algorithms scale with17
the dimension of the data. To illustrate the utility of these new models, we18
simulated isolation-by-distance patterns and broad-scale geographic variation19
using spatial coalescent models. Our methods remove the horseshoe patterns20
usually observed in PC maps and simplify interpretations of spatial genetic21
variation. We demonstrate our approach by analyzing single nucleotide poly-22
morphism data from the Human Genome Diversity Panel, and provide com-23
parisons with other recently introduced methods.24

3700 words, 8 figures.25
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Introduction36

The concept of “isolation-by-distance" (IBD) was introduced by S. Wright to describe37

the accumulation of local genetic differences under spatially restricted dispersal (Wright,38

1943). In species that are continuously distributed in geographic space and disperse over39

short distances, the theory predicts that genetic differentation will increase with geographic40

distance (Kimura and Weiss, 1964; Malécot, 1948). IBD can be described by spatial au-41

tocorrelation, a measure of the degree of dependency among observations in a geographic42

space. Although studying IBD patterns could lead to useful estimates of gene dispersal43

(Rousset, 1997), spatial autocorrelation derived from IBD often presents a problem for44

population genetic analyses. More specifically, the presence of spatial autocorrelation pat-45

terns can increase the rate of false positive tests for hierarchical population structure or for46

the detection of loci under selection (Meirmans, 2012).47

Recently, it has been acknowledged that distortions caused by spatial autocorrelation48

could also bias interpretations of population genetic structure as inferred from PCA or49

from Bayesian clustering methods (François et al., 2010; Novembre and Stephens, 2008).50

Principal component analysis (PCA) is a method that searches for axes, called principal51

components, along which projected individuals show the highest variance. As a result, the52

first PCs are often used to explore the structure of variation in the sample. Characterized53

by locally correlated allele frequencies, IBD patterns create periodic shapes in PC maps54

that can confound signatures of migration events and influence interpretations of princi-55

pal component analyses (Novembre and Stephens, 2008). In scenarios where covariance56

decays exponentially with geographic distance, PC plots are indeed expected to exhibit57

horseshoe effects, an artifact in which the second axis is curved relative to the first axis.58

These effects lead to counterintuitive representations of the data (Diaconis et al., 2008;59
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Legendre and Gallagher, 2001).60

Several methods have been proposed to correct for the effects of spatial autocorrela-61

tion in exploratory data analyses. In particular, those methods include spatial Principal62

Component Analysis (sPCA, Borcard and Legendre 2002; Borcard et al. 2004; Dray et al.63

2006; Jombart et al. 2008), and sparse factor analysis (SFA, Engelhardt and Stephens64

2010). Generally the methods share the objective of separating local and regional geo-65

graphic scales in the data. In this study, we introduce a novel approach, based on latent66

factors models, that addresses the separation of geographic scales more directly than the67

two previous methods. The new method, Spatial factor analysis (spFA), combines prob-68

abilistic PCA (Tipping and Bishop, 1999) and kriging models (Cressie, 1993) to infer69

population genetic structure from genetic data while correcting for errors introduced by70

spatial autocorrelation. While many approaches have been argued to improve interpreta-71

tions of the data, their outputs have not yet been compared to each other on the basis of72

spatial simulations. To compare methods, we generated patterns of IBD and broad-scale73

geographic variation using computer simulations of spatial coalescent models. We com-74

pared the outcomes of methods under population genetic models of isolation-by-distance,75

and we argued that the methods provided insights on distinct aspects of the data. We report76

that the new spFA method was able to remove the horseshoe effect observed in spatially77

structured data, whereas this was not the case in PCA, sPCA and SFA analyses. We dis-78

cuss the significance of this result in an assessment of single nucleotide polymorphism79

data from worldwide samples of the Human Genome Diversity Panel.80
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Material and Methods81

We considered single nucleotide polymorphism (SNP) data for n individuals genotyped at82

L loci. For these data, the genotypic matrix entries, (Gi`), record the number of derived83

alleles at locus ` for individual i. For autosomal data, Gi` is thus equal to 0, 1 or 2, and84

corresponds to the genotype at locus `. The data were centered by substracting the mean85

value of each column of G and scaled by dividing by the standard deviation value of each86

column of G. In addition to the genotypic data, we assumed that geographical coordinates,87

(Xi), were recorded for each individual.88

We evaluated the effects of IBD patterns on inference of population genetic structure89

using 4 statistical methods: Principal Component Analysis (PCA, Jolliffe 1986; Patter-90

son et al. 2006), spatial PCA (sPCA, Jombart et al. 2008), Sparse Factor Analysis (SFA,91

Engelhardt and Stephens 2010), and a new method called spatial Factor Analysis (spFA).92

Principal Component Analysis. PCA is a popular method that searches for a set of K93

orthogonal axes (the principal components), each of which is a linear combination of the94

original axes, such that projections of the original data display maximal variance onto the95

new axes (McVean, 2009). We computed the score matrix, U of dimension n × K, and the96

loading matrix, V of dimensions K × L, using the rank K singular value decomposition97

method implemented in the R function prcomp and in the computer program SmartPCA98

(Patterson et al., 2006).99

Moran eigenvectors and spatial PCA. Moran eigenvectors maps were proposed as an100

alternative to trend surface analysis for incorporating spatial variation in population genet-101

ics models (Dray et al., 2006; Jombart et al., 2008). In Moran eigenvectors maps, there are102
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positive and negative eigenvalues. Eigenvectors associated with positive eigenvalues have103

positive autocorrelation, and they describe global structures. Eigenvectors associated with104

negative eigenvalues describe local structures. Implemented in an algorithm called spatial105

PCA (sPCA), Moran’s eigenvector maps (MEM) maximize Moran’s spatial autocorrela-106

tion index, defined as follows107

I(g) =

∑
i, j wi j(gi − ḡ)(g j − ḡ)∑

i, j wi j
∑

i(gi − ḡ)2

with respect to a spatial weighting matrix, W, deduced from geographical distances (Dray108

et al., 2006). We implemented MEMs and sPCA using the R package adegenet using a109

Delaunay weighting matrix (Jombart et al., 2008).110

Spatial Factor Analysis. We introduced a new spatial factor analysis model (spFA)111

which incorporates spatial information in factor analysis in an explicit way. In spFA, infer-112

ence was performed in a matrix factorization model similar to probabilistic PCA (Tipping113

and Bishop, 1999)114

Gi` = UT
i V` + εi` , (1)

where εi` are statistically dependent Gaussian variables with mean zero and with covari-115

ance matrix Σθ. Similarly to Kriging approaches (Cressie, 1993), a radial basis covariance116

matrix was chosen to model spatial autocorrelation patterns generated by IBD (see also117

Durand et al. 2009). The covariance matrix Σθ was defined as follows. For all pairs of118

individuals, i and j, we have119

Σθ(i, j) = exp(−d(Xi, X j)/θ), θ > 0 , (2)
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where d(Xi, X j) represents the squared Euclidean or great-circle distance between sites120

with coordinate Xi and with coordinate X j. To avoid colinearity issues, we assumed that121

the individual geographical coordinates were distinct to each other (ties were broken by122

adding small perturbations to the original spatial coordinates). The parameter θ is a scale123

parameter measured in units of average pairwise distance between geographic sites, d̄. In124

practice, spFA required that an array of θ values (scale parameter) were explored, and θ125

was varied in the range (0, 10d̄).126

To solve the spFA model, we used a Cholesky decomposition, CTC = Σ−1
θ , and we127

established an equivalence with the following matrix factorization model128

G̃i` = ŨT
i Ṽ` + ε̃i` , (3)

where G̃ = CG, Ũ = CU, Ṽ = V and where ε̃` are statistically independent Gaussian129

vectors of mean zero and covariance matrix equal to identity. The matrix Ũ and Ṽ were130

obtained by applying a singular value decomposition of rank K to the transformed data131

matrix, CG. Then, U and V were obtained by applying a singular value decomposition132

of rank K to C−1ŨṼ . To avoid multiple solutions, the orthogonality condition VVT = IK ,133

where IK is the identity matrix in K dimensions, was imposed to V (Figure 1). The time134

needed to compute SpFA is the same order as the time needed to compute K scores and135

loadings for a standard PCA (Patterson et al., 2006). For an example of implementation,136

see our R code (http://membres-timc.imag.fr/Olivier.Francois/spfa.R).137

[Figure_1.TIF]138

Sparse Factor Analysis. Sparse Factor Analysis (SFA) was introduced by Engelhardt139

and Stephens (2010) as an alternative to admixture-based models, and this method can140
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recapitulate the results of PCA when population structure is influenced by IBD patterns.141

To give a description of SFA, we considered a regression model of the following form142

Gi` = UT
i V` + εi` (4)

in which the residual errors are independent Gaussian random variables, εi,` ∼ N(0, 1/ψi),143

and where the prior distribution on the precision parameter, ψi, is a Gamma distribution.144

In the SFA model, an automatic relevance determination prior is considered for the score145

vectors, Uik ∼ N(0, σ2
ik), where some σ2

ik are constrained to be equal to zero. We imple-146

mented SFA using the code distributed in (Engelhardt and Stephens, 2010), and we used147

1,000 iterations. Eigenvectors in spFA and in SFA were also referred to as factors or axes.148

Simulated data. We generated simulated data for two diverging populations using coa-149

lescent models implemented in the computer program ms (Hudson, 2002). In these mod-150

els, each population was simulated according to a linear stepping-stone model with 50151

demes. To reproduce the simulation settings of Novembre and Stephens (2008), the ef-152

fective migration rate between pairs of adjacent demes was set to the value 4Nm = 1.153

The divergence time τ between the two populations was varied within the range of values154

τ = (0, 100) measured in coalescent units. We sampled 100 individuals, one from each155

deme both side of a (fictive) geographic barrier. For each simulation, we evaluated Wilks’156

Λ, a statistic used in multivariate analysis of variance to test whether there are differences157

between the means of identified groups of individuals on the combination of genotypes158

(Mardia et al., 1979).159
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Results160

Pure isolation-by-distance patterns. In a first series of experiments, we used simula-161

tions of one-dimensional stepping-stone models reproducing the patterns of IBD described162

in Novembre and Stephens (2008). In those simulated data, the divergence time between163

the two populations was thus set to τ = 0, and the populations were connected by recur-164

rent gene flow (4Nm = 1). As expected from theoretical results for PCA and for other165

ordination methods (Novembre and Stephens 2008; Ahmed et al. 1974; Dray et al. 2006),166

the first PC maps displayed oscillating patterns. In addition, the frequency of oscillation167

increased as we examined axes of higher orders (Figure 2A). When we used sPCA, the168

first three positive components were almost identical to those obtained with PCA (not169

reported).170

Running spFA with K = 3 and with 3 distinct values of the scale parameter (θ/d̄ =171

0.1, 0.2 and 0.3) led to different interpretations of the genetic data (Figure 2B-D). Gradu-172

ally varying θ allowed us to evaluate the scales at which the IBD effects were apparent, and173

also allowed us to remove those effects sequentially. For θ/d̄ = 0.1, the maps correspond-174

ing to factor 1 and 2 displayed sinusoidal curves similar to PC1 and PC2, whereas the map175

for factor 3 was flat as expected if the effect of IBD is removed (Figure 2B). For θ/d̄ = 0.2,176

the map corresponding to factor 1 remained similar to PC1, but the maps for factor 2 and177

factor 3 were flat (Figure 2C). For θ/d̄ = 0.3, the effects of isolation by distance were178

corrected in all axes (Figure 2D).179

When we ran SFA with K = 3 factors, the resulting maps also emphasized aspects of180

the data different from the ones described by PC maps and spatial factor maps (Figure 3).181

Maps for SFA are interpreted in terms of clusters, similar to those obtained in non-spatial182

Bayesian assignment programs like structure (Pritchard et al., 2000). Clusters created by183
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clustering programs under IBD models are often reported as being undesirable (François184

and Durand, 2010; Meirmans, 2012).185

[Figure_2.TIF]186

[Figure_3.TIF]187

Two diverging populations with IBD patterns. In a second series of experiments, we188

used simulations of a two-population model, where each population consisted of a linear189

network of 50 demes. In these experiments, the two populations were separated by a190

geographic barrier to gene flow.191

First the divergence time was set to τ = 10 coalescent units. Using PCA, the first 2192

components displayed oscillating patterns, similar to those obtained with τ = 0 (pure IBD193

simulations) (Figure 4A). The PC1-PC2 plot exbihited a clear horseshoe pattern. Differen-194

tiation between the two populations was visible in the PC1 map, where a discontinuity was195

observed at the center of the habitat. This discontinuity corresponded to the localization of196

the geographic barrier. Results for the positive eigenvectors of sPCA strongly resembled197

those obtained for the first PCs (Figure 4B).198

Turning to spFA, we argued for a particular choice of θ/d̄ based on Wilks’ Λ statistic,199

a standard measure of separation of groups in discriminant analysis, and computed this200

statistic for θ/d̄ ranging between 0.01 and 10. As spatial factor analysis provided differ-201

ent interpretations of the data depending on the scale at which the data were analyzed,202

the choice of θ was crucial to the method. Figure 5 reports the value of Wilks’ Λ as a203

function of the logarithm of θ/d̄. Values of θ/d̄ minimizing Wilks’ statistic and providing204

the best description of our data into clusters were about 0.32 (Figure 5). When spFA was205

applied with K = 2, the first factor map grouped demes at the left and the right of the206

10



geographic barrier in two main clusters, while simultaneously correcting for IBD patterns207

within the two clusters (Figure 4C). The spFA Axis1-Axis2 plot removed the horsehoe208

effect observed in PCA and sPCA plots. The resulting figure emphasized a discontinuous209

population structure consisting of two differentiated genetic clusters. Running SFA with210

K = 2 also led to a description of the data in two genetic clusters, located both sides of211

the geographic barrier, but the method failed to describe the two clusters as discontinuous212

entities (Figure 4D).213

Based on PC and factor plots, we next computed Wilks’ Λ statistic for all methods, and214

for divergence times τ ranging between 0 and 100 (Figure 6). Lower values of Λ generally215

indicated better discrimination of the 2 divergent populations in PC or factor plots. For216

all methods, the Λ statistic decreased as the divergence time between the 2 populations217

increased (McVean 2009). In our spatially explicit framework, SFA (green curve) detected218

the existence of diverging populations earlier than PCA (red curve) and than sPCA (not219

shown, similar to PCA). SpFA was the most sensitive method, and provided an earlier220

detection of divergent clusters than SFA and PCA (blue curve).221

[Figure_4.TIF]222

[Figure_5.TIF]223

[Figure_6.TIF]224

Human data analysis. Next we applied PCA, sPCA, SpFA and SFA to a worldwide225

sample of genomic DNA from 418 individuals in 27 Asian populations, from the Har-226

vard Human Genome Diversity Project - Centre Etude Polymorphism Humain (Harvard227

HGDP-CEPH) (ftp://ftp.cephb.fr/hgdp_v3/). In those data, each marker has been ascer-228
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tained in samples of Mongolian ancestry (referenced population HGDP01224). We se-229

lected all samples from Central and East-Asia at the exception of Xibe, who originated230

in northeastern China, but migrated to northwestern China only recently (Powell et al.,231

2007) (Figure 7A). The data set used a panel of 10,664 SNPs (see Patterson et al., 2012,232

ftp://ftp.cephb.fr/hgdp_supp10/).233

In our analysis, samples from Central Asia, West to the Tibetan plateau, were rep-234

resented with red/orange colors, whereas populations from East-Asian were represented235

with blue colors (Figure 7A). For those samples, the PC plot exhibited a horseshoe pattern,236

which was a signature of the presence of IBD patterns in the data (Figure 7B). PCA led237

to a continuum of samples without observable genetic discontinuities. Running spFA with238

K = 2 and setting θ/d̄ = 10−2 on the basis of Wilks’ statistic analysis, spFA corrected for239

the effects of IBD in axes 1 and 2 (Figure 7C). The spFA method provided evidence of240

a major discontinuity separating two clusters, one in Central Asia and one in East-Asia.241

In addition, Uyghur and Hazara population samples aligned with the two main clusters242

and were placed in an intermediate position, suggesting genetic admixture from ancestral243

Central Asian and East-Asian gene pools. Essentially the same patterns emerged when244

spFA was applied with K = 3 at the same scale (Figure 8C, 8D).245

Using SFA with K = 2, factors 1 and 2 confirmed the main discontinuity, in a represen-246

tation of clusters closer to Bayesian clustering methods than to PCA (Figure 7D). Uyghur247

and Hazara population samples were also placed between the main clusters. When we used248

SFA with K = 3, we obtained shapes without natural interpretations (Figure 8A, 8B). SFA249

detected additional discontinuities whereas the other methods suggested that continuous250

genetic variation in geographic space was predominant.251

[Figure_7.TIF]252
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[Figure_8.TIF]253

Discussion254

Principal component analysis and related methods used to describe genomic variation255

among large population samples are known to produce results that can be distorted by256

IBD, and that may thus be difficult to interpret. The horseshoe effect is one of the distor-257

tions observed in PC plots that arises when covariance between allele frequencies decays258

exponentially with geographic distance. In this case, there is an established mathematical259

correspondence between the eigenvectors of the covariance matrix and the columns of a260

discrete cosine-transform (Ahmed et al., 1974; Diaconis et al., 2008). In this study, we261

used this correspondence to propose a new approach based on spatial models for the co-262

variance structure of residual errors in factor analysis. In spFA, IBD effects were modeled263

through the introduction of a covariance matrix that accounts for the geographic distance264

between individuals explicitly.265

We compared spFA to PCA and to two recent methods that also attempt to correct for266

IBD effects: spatial Principal Component Analysis (sPCA, Jombart et al. 2008) and sparse267

factor analysis (SFA, Engelhardt and Stephens 2010). When we applied PCA to simulated268

data from spatial coalescent models, PC maps displayed sinusoidal curves as observed in269

previous studies (Novembre and Stephens, 2008). We observed that sPCA, which includes270

several distance matrices within Moran eigenvector maps of genetic data, produced results271

similar to those of PCA, and did not correct for IBD effects. When we applied SFA to272

spatial coalescent simulations, the algorithm clustered individuals in several small groups273

depending on the number of latent factors used in the method. SFA factor maps actually274

displayed outcomes closer to discrete clusters than to continuous variation. After adjusting275
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for the spatial scale in the covariance model, spFA was able to remove the oscillating276

shapes observed in the first PCs sequentially.277

When PCA was applied to spatially explicit simulations of two diverging populations,278

PC maps failed to firmly identify genetic discontinuities between populations. Despite a279

relatively long period of isolation in simulations, the populations were not strongly sep-280

arated in PC maps due to the horseshoe effect. Compared to PCA and sPCA, the spFA281

method had increased power to identify genetic discontinuities where they were masked282

by spurious autocorrelation effects. When we applied SFA, we found that, up to normal-283

ization of outputs, the results were similar to those generated by clustering algorithms like284

structure. For simulations of two diverging populations, SFA detected a main separation285

between two differentiated populations, but this approach did not correct for IBD effects286

within the main genetic clusters. Similarly to structure, the results of SFA were influ-287

enced by the presence of IBD patterns in the samples. We found that spFA alleviated this288

issue, and that it produced results more robust to the choice of the number of factors than289

SFA.290

The methods used in this study provided quite distinct descriptions of the data when291

they were applied to human population samples from Central and East Asia, and they un-292

derlined several aspects of the data. With PCA, a typical horseshoe pattern was observed,293

but no obvious genetic discontinuities were observed. In contrast, SFA provided evidence294

for two main clusters which were also confirmed by spFA. When we used SFA with K =295

3, we obtained shapes without natural interpretations (Figure 8). SFA detected additional296

discontinuities whereas the other methods suggested that continuous genetic variation in297

geographic space was predominant. We observed that SFA behaves like clustering algo-298

rithms and did not correct for spurious clusters created by IBD patterns. This issue makes299
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the SFA results difficult to interpret in terms of admixture and ancestral populations. The300

spFA method corrected for the horseshoe pattern observed in PC plots by removing au-301

tocorrelation effects from the second and third axes. The method suggested that Asian302

population structure is strongly influenced by IBD patterns. In the spFA plot, Hazara of303

Pakistan and Uygur of northwestern China grouped together, and were placed between304

Pakistani and East Asian populations (Rosenberg et al., 2002). A way to interpret those305

results is as a support for admixed genomes in Hazara and Uygur populations, or as fa-306

voring the hypothesis of a central Asian migration route of modern humans in East Asia307

(Zhang et al., 2007). The public availability of data sets other than the HGDP will en-308

able us to make further assessment of the interest of the method for the analysis of human309

genetic data in the future.310

A potential limitation of the spFA approach is to be sensitive to the choice of the scale311

parameter, θ. The θ parameter actually determines the scale of the spatial effects that312

could be removed by spFA. Note that spFA is essentially performing a standard principal313

component analysis when it is applied with small values of the scale parameter. In this314

study, we suggested to explore a grid of θ values so that IBD effects could be removed315

at distinct scales sequentially. The choice of the number of factors, K, in spFA is also316

tied to the particular value of θ implemented in the model. One way to determine K is by317

using Tracy-Widom tests on the matrix of genotypes, G̃ (Patterson et al., 2006). Gradually318

increasing the value of θ enabled a fine grain analysis of genetic discontinuities in human319

data, and allowed us to study IBD patterns within genetic clusters. The computational320

complexity of spFA is linear in function of the number of markers. Since it is equivalent321

to the computation of a low rank approximation of the genotypic matrix (lower than a322

standard PCA, a few seconds on standard computer systems), applying spFA at multiple323
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scales was not highly time-consuming.324

Conclusion. This study provided a comparison of existing methods that attempt to325

correct for IBD effects in population genetic analyses, and showed that each of studied326

approaches provided different insights on the data. Under equilibrium IBD, PCA was327

confounded by continuous variation and main genetic discontinuities may be missed or328

misinterpreted. For the same data, SFA over-estimated the number of clusters in the ge-329

netic data, creating spurious clusters from continuous patterns. In the presence of IBD330

patterns, spatial factor analysis provided clearer interpretations of the data than PCA and331

SFA. In a spatially explicit framework, we found that spFA identified genetic discontinu-332

ities more efficiently than did PCA or SFA when these discontinuities are blurred by noise333

from IBD patterns in the genetic data.334
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Legends340

Figure 1: Algorithm for SpFA. For a genotypic matrix G with individual geographic coor-341

dinates (Xi), and for scale parameter θ > 0, the spFA steps summarize as follows:342

343

Figure 2: PC and SpFA factor maps for data simulated under an IBD model. A) PC344

maps, B) SpFA factor maps for θ/d̄ = 0.1, C) SpFA factor maps for θ/d̄ = 0.2, SpFA345
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factor maps for θ/d̄ = 0.3.346

347

Figure 3: SFA factor maps for data simulated under an IBD model. Plots of the first348

three Factor maps for SFA.349

350

Figure 4: Two discrete populations under equilibrium IBD. Plots of the first 2 maps for A)351

PCA, B) sPCA, C) spFA, D) SFA.352

353

Figure 5: Wilks’ Λ statistic as a function of the scale parameter θ/d̄ in spFA.354

355

Figure 6: Wilks’ Λ statistic as a function of the divergence time, τ, ranging between 1356

and 100.357

358

Figure 7: A) Asia map with geographic locations of HGDP populations. PC and fac-359

tor plots for B) PCA C) SpFA, D) SFA.360

361

Figure 8: Factor plots for A), B) SFA and C), D) SpFA with K = 3 clusters.362
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Legends425

Figure 1: Algorithm for SpFA. For a genotypic matrix G with individual geographic coor-426

dinates (Xi), and for scale parameter θ > 0, the spFA steps summarize as follows:427

428

Figure 2: PC and SpFA factor maps for data simulated under an IBD model. A) PC429
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maps, B) SpFA factor maps for θ/d̄ = 0.1, C) SpFA factor maps for θ/d̄ = 0.2, SpFA430

factor maps for θ/d̄ = 0.3.431

432

Figure 3: SFA factor maps for data simulated under an IBD model. Plots of the first433

three Factor maps for SFA.434

435

Figure 4: Two discrete populations under equilibrium IBD. Plots of the first 2 maps for A)436

PCA, B) sPCA, C) spFA, D) SFA.437

438

Figure 5: Wilks’ Λ statistic as a function of the scale parameter θ/d̄ in spFA.439

440

Figure 6: Wilks’ Λ statistic as a function of the divergence time, τ, ranging between 1441

and 100.442

443

Figure 7: A) Asia map with geographic locations of HGDP populations. PC and fac-444

tor plots for B) PCA C) SpFA, D) SFA.445

446

Figure 8: Factor plots for A), B) SFA and C), D) SpFA with K = 3 clusters.447
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