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Context: systems biology 
• Many high-throughput projects  

– basic yes-or-no test to a large collection of “objects” 
– low-frequency positives 
– experimental noise 

• A natural solution: smart-pooling, provided that 
– objects are individually available 
– basic assay on pool of objects (OR: XOR is not available) 

• Advantages: 
– Number of pools is small 
– Pools are redundant → error-correction 

• Main difficulty: designing the pools 
– Non-adaptive designs 
– Specific constraints (e.g. pool size) 
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Example of smart-pooling: row and 
columns 

 
 
 
 
 
 
 
(from: Thierry-Mieg N. Pooling in 
systems biology becomes smart. 
Nat Methods. 2006 Mar;3(3):161-2.) 
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Layout of the talk 
 
• Biological context 
• Definition of STD 
• Properties 
• Behavior and efficiency 
• Application: protein-protein interaction mapping 
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STD: preliminary definitions 
• Pooling problem (n,t,E): 

• An = {A0, …,An-1} set of Boolean variables (n≈103-106) 
• t = number of positives (≈1-10) 
• E = number of errors (≈1-40% of tests) 

 
• Pool: subset of An , value=OR 
 
• Goal: build a set of v pools 

→ v small  
→ guarantee correction of errors & identification of positives 
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Matrix representation 
v×n Boolean matrix: M(i,j) true ⇔ pool i contains variable j 
 
Example: n=9, A 9 = {0, 1,…, 8} :  

         pools: 
{0,3,6} 
{1,4,7} 
{2,5,8} 

 
“layer” = partition of An 
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Shifted Transversal Design: idea 
“Transversal” construction: layers. 
“shift” variables from layer to layer 

•  limit co-occurrence of variables 
•  constant-sized intersection between pools 

 

STD(n;q;k) : n variables, q prime, q < n, k number of layers (k ≤ q+1) 

•  First q layers: symmetric construction, q pools of size n/q or n/q+1 
•  If k=q+1: additional singular layer, up to q pools of heterogeneous 

sizes 
Let: 

•  Γ(q,n) = min{γ | qγ+1 ≥ n} 
•  σq circular permutation on {0,1}q :  
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STD Construction 
∀  j ∈  {0,…,q}: Mj q×n Boolean matrix, representing layer L(j) 
columns                   : 
  
                , and ∀  i ∈  {0,…,n-1}                                  where: 
 
 

•  if j < q: s(i,j) =   
 

•  if j=q (singular layer): s(i,q) =  
 
 
For k ∈  {1,2,..., q+1}, STD(n;q;k) =  
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STD example: n=9, q=3 
L(0) = {{0,3,6}, {1,4,7}, {2,5,8}} 
 
 
L(1) = {{0,5,7}, {1,3,8}, {2,4,6}} 
 
 
L(2) = {{0,4,8}, {1,5,6}, {2,3,7}} 
 
 
L(3) = {{0,1,2}, {3,4,5}, {6,7,8}} 
 
STD(n=9;q=3;k=2) = L(0) ∪  L(1). 
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STD example: n=9 to 27, q=3 
n=9, q=3, third layer (j=2): 

 
L(2) = {{0,4,8}, {1,5,6}, {2,3,7}} 

 
 
 

n=27, q=3, j=2:  
 
 +1   +(1+j)          +(1+j+j2) 
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Layout of the talk 
 
• Biological context 
• Definition of STD 
• Properties: a solution to the pooling problem 
• Behavior and efficiency 
• Application: protein-protein interaction mapping 
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Co-occurrence of variables 
∀  k ∈  {1,...,q+1}, ∀  i ∈  {0,…,n-1}: poolsk(i) = {p ∈  STD(n;q;k) | Ai ∈  p} 
Theorem: (q prime). ∀  i1,i2 ∈  {0,…,n-1},  
[i1≠i2] ⇒ [Card(poolsq+1(i1) ∩ poolsq+1(i2))  ≤  Γ(q,n)]. 
(Idea of) proof: Card(poolsq+1(i1) ∩ poolsq+1(i2)) = Card {j∈ {0,…,q},                   }. 
However, for j < q: 
                    ⇔                     ⇔ 

Since q is prime, Ζ
Ζ

q  is the field GF(q); 

And since i1≠i2, there exists at least one c ≤ Γ such that                                       . 

We therefore have a non-zero polynomial (in j) of degree at most Γ on GF(q). 
If                  : OK.  
If                  , coefficient of jΓ in the polynomial is zero by definition of s(i,q): OK. 
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Example: n=9, q=3 (hence ΓΓΓΓ=1) 
L(0) = {{0,3,6}, {1,4,7}, {2,5,8}}, 
L(1) = {{0,5,7}, {1,3,8}, {2,4,6}}, 
L(2) = {{0,4,8}, {1,5,6}, {2,3,7}}, 
L(3) = {{0,1,2}, {3,4,5}, {6,7,8}}. 
 
pools4(0) = {{0,3,6}, {0,5,7}, {0,4,8},{ 0,1,2}}. 
 
0 appears exactly once (Γ=1) with each other variable. 
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A solution in the absence of noise 
Corollary 1: If there are at most t positive variables in An and in the 
absence of noise: STD(n;q;k) is a solution, when choosing q prime such 
that t⋅Γ(q,n) ≤ q, and k=t⋅Γ+1. 
 
 
(Idea of) proof: algorithm 1 correctly tags all variables. 
Algorithm 1:  

1. all the variables present in at least one negative pool are tagged 
negative 

2. any variable present in at least one positive pool where all other 
variables have been tagged negative, is tagged positive 
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Example with n=9, q=3 
Let t=1: by corollary 1, k=t⋅Γ+1=2 layers are sufficient 
 
Single positive variable: 8 
{{0,3,6}, {1,4,7}, {2,5,8},  
  {0,5,7}, {1,3,8}, {2,4,6}} 
Algorithm 1: 
1. 4 negative pools show that 0, 1, …, 7 are negative;  
2. 2 positive pools each show that 8 is positive (since 2, 5, 1 and 3 

negative). 
 
Note: if more than t variables are positive, all tags are still correct but 
some variables may not be tagged: they are “unresolved” (“ambiguous”). 
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Error-correction 
Corollary 2: If there are at most t positive variables in An and at most 
E observation errors: STD(n;q;k) is a solution, when choosing q prime 
such that t⋅Γ(q,n)+2⋅E  ≤ q, and k=t⋅Γ+2⋅E+1. 
 
 
(Idea of) proof: algorithm 2 correctly tags all variables. Any 
contradictory observation is erroneous. 
Algorithm 2: 

1. all the variables present in at least E+1 negative pools are tagged 
negative 

2. any variable present in at least E+1 positive pools where all other 
variables have been tagged negative, is tagged positive 
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Error-correction (2) 
Errors can be false-positives or false negatives 
 
Corollary 3: If there are at most t positive variables in An and at most 
E false positive and E false negative observations: STD(n;q;k) is a 
solution, when choosing q prime such that t⋅Γ(q,n)+2⋅E  ≤ q, and 
k=t⋅Γ+2⋅E+1. 
 
 
(Idea of) proof: same algorithm as corollary 2. 
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Error-detection 
If more than E errors: detection if  

• some variables tagged twice or not at all 
• more than t variables are tagged positive 
• more than E observations identified as erroneous 

 

Question: how many errors are necessary to avoid detection? 
 

Answer:  
•  at least E+Γ+1 false negatives, or  
•  at least E+Γ+1 false positives, or  
•  if E < 2⋅Γ-1: at least 3⋅E+2 errors including at least E+1 errors of each 

type. 
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Error detection and correction 
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Even redistribution of variables 
Theorem: Let m ≤ k ≤ q and consider {P1,…,Pm} ⊂  STD(n;q;k), each 

belonging to a different layer. Then: 

                             , where                                        . 

 

Proof: see BMC Bioinformatics 2006, 7:28. 
 

Notes: 
•  λm depends only on m, not on the choice of the pools P1,…,Pm. Hence the 

theorem expresses that every pool, and every intersection between 2 or 
more pools, is redistributed evenly in each remaining layer 

•  L(q) does not work (k ≤ q) 
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Layout of the talk 
 
• Biological context 
• Definition of STD 
• Properties 
• Behavior and efficiency 
• Application: protein-protein interaction mapping 
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Guaranteed efficiency 
Problem specification (n, t, E) → minimal STD design 
Example: n=10000, t=5, E=0 

q Γ (compression) k (nb layers) q⋅k (nb pools)
≤13 ≥3 ≥16 k>q+1 
17 3 16 272 
19 3 16 304 
23 2 11 253 
29 2 11 319 
… 2 11 … 
97 2 11 1067 

101 1 6 606 
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Comparing with other designs 



 24 

Comparing with other designs 
•  (1) optimal solution for some instances with t ≤ 2. (2): real application 

with t=2 and n=1530; design with 4368 variables similar to (1) (but 
not optimal), reduced to 1530 variables to fit the problem spec. 
Finally: similar number of pools and pool size as STD. 

 
 
 
 
 
 
 
 
 
 
 
 
1. Balding D., Torney D. (1996) J. Comb. Theory Ser A 74, 131-140. 
2. Balding D., Torney D. (1997) Fungal genet. biol. 21, 302-307. 
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Comparing with other designs 
•  (1) optimal solution for some instances with t ≤ 2. (2): real application 

with t=2 and n=1530; design with 4368 variables similar to (1) (but 
not optimal), reduced to 1530 variables to fit the problem spec. 
Finally: similar number of pools and pool size as STD. 

•   (3,4) designs guaranteeing t=2 often work well for larger t. Example 
n=106: v=946 pools => guarantee for t=2 and 97.1% success for t=5. 
STD(n;11;11): v=121, t=2; STD(n;23;21): v=483, t=5 (guaranteed). 

 
 
 
 
1. Balding D., Torney D. (1996) J. Comb. Theory Ser A 74, 131-140. 
2. Balding D., Torney D. (1997) Fungal genet. biol. 21, 302-307. 
3. Macula A. (1996) Discrete Math. 162, no. 1-3, 311-312. 
4. Macula A. (1999) Ann. Comb. 3, 61-69. 
5. Ngo H., Du D-Z. (2002) Discrete Math. 243, no. 1-3, 161-170. 
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Comparing with other designs 
•  (1) optimal solution for some instances with t ≤ 2. (2): real application 

with t=2 and n=1530; design with 4368 variables similar to (1) (but 
not optimal), reduced to 1530 variables to fit the problem spec. 
Finally: similar number of pools and pool size as STD. 

•   (3,4) designs guaranteeing t=2 often work well for larger t. Example 
n=106: v=946 pools => guarantee for t=2 and 97.1% success for t=5. 
STD(n;11;11): v=121, t=2; STD(n;23;21): v=483, t=5 (guaranteed). 

•  (5) two constructions (graph theory). Example n=18 918 900:   
v=5460 pools => guarantee for t=2, and 98.5% success for t=9. 
STD(n;13;13): v=169, t=2; STD(n;37;37): v=1369, t=9 guaranteed. 

1. Balding D., Torney D. (1996) J. Comb. Theory Ser A 74, 131-140. 
2. Balding D., Torney D. (1997) Fungal genet. biol. 21, 302-307. 
3. Macula A. (1996) Discrete Math. 162, no. 1-3, 311-312. 
4. Macula A. (1999) Ann. Comb. 3, 61-69. 
5. Ngo H., Du D-Z. (2002) Discrete Math. 243, no. 1-3, 161-170. 
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Layout of the talk 
 
• Biological context 
• Definition of STD 
• Properties 
• Behavior and efficiency 
• Application: protein-protein interaction 
mapping 



 28 

Using STD 
•  In practice, if we tolerate a small fraction of ambiguous variables, we 

can use less pools than necessary for the guarantee 
Example: n=10000, t=5, error-rate 1%: guarantee requires 483 pools; but 
when tolerating up to 10 ambiguous variables (will need retesting), 143 
pools prove sufficient 
•  Given (n,t,E) and number of tolerated ambiguous variables, we find 

optimal parameter values by simulation 
•  Difficulty: “decode” observed pool values 
For this purpose, new algorithms (paper in prep.) 
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Example: Y2H pilot project 
Collaboration with Marc Vidal’s lab, DFCI, Boston 
•  n=940 preys from human ORFeome 
•  noise levels unknown, estimated at 20% false 

negatives and 20% false positives 
•  combined into 169 pools of 73 preys, 13x 

redundancy (2 days of work with robot) 
•  100 baits screened; the 100x940 pairs have all 

been tested previously 
•  Initial results:  
� 38 known interactions (72%) 
� 23 new interactions (improved twofold) 
� better estimates for error-rates 
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Summary: the Shifted Transversal 
Design 

•  Family of non-adaptive combinatorial pooling designs 
 
•  Solution to the “pooling problem” 

 
•  Flexibility: for any (n,t,E), guarantee requirement satisfied 
 
•  Efficiency: STD seems more efficient than most published pooling 

designs 
 

•  Applied to protein-protein interaction mapping, successful 
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Prospects 
•  Study STD from the point of view of Shannon’s information theory 

(are we far from the theoretical optimum?)  
 

•  Smart-pools for the full C. elegans ORFeome: desire for a modular 
construction 

build once, use with various pool sizes (assay in 96, 384, 1536, 6144…) 
STD seems well suited for this! 
Example: n=27, q=3 
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