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Abstract

Most genes, proteins and other components carry out their functions within a complex network of interactions and a single molecule can
affect a wide range of other cell components. A global, integrative, approach has been developed for several years, including protein–protein
interaction networks (interactomes). In this review, we describe the high-throughput methods used to identify new interactions and to build
large interaction datasets. The minimum information required for reporting a molecular interaction experiment (MIMIx) has been defined as a
standard for storing data in publicly available interaction databases. Several examples of interaction networks from molecular machines
(proteasome) or organelles (phagosome, mitochondrion) to whole organisms (viruses, bacteria, yeast, fly, and worm) are given and attempts to
cover the entire human interaction network are discussed. The methods used to perform the topological analysis of interaction networks and to
extract biological information from them are presented. These investigations have provided clues on protein functions, signalling and
metabolic pathways, and physiological processes, unraveled the molecular basis of some diseases (cancer, infectious diseases), and will be
very useful to identify new therapeutic targets and for drug discovery. A major challenge is now to integrate data from different sources
(interactome, transcriptome, phenome, localization) to switch from static to dynamic interaction networks. The merging of a viral interactome
and the human interactome has been used to simulate viral infection, paving the way for future studies aiming at providing molecular basis of
human diseases.
# 2008 Elsevier Masson SAS. All rights reserved.

Résumé

La plupart des gènes, des protéines et des autres constituants cellulaires exercent leurs fonctions au sein d’un réseau complexe d’interactions et
une seule molécule peut affecter un ensemble d’autres molécules. Une approche globale, intégrative, a été développée depuis plusieurs années pour
construire des réseaux d’interactions protéine–protéine (interactomes). Dans cette revue sont décrites les méthodes dites « haut débit » qui
permettent d’identifier plusieurs milliers d’interactions en parallèle. L’information minimale pour décrire une expérience d’interaction moléculaire
(MIMIx) a été définie pour le stockage des données dans des bases de données d’interactions publiquement disponibles. Plusieurs exemples de
réseaux d’interactions sont donnés, des machines moléculaires (protéasome) ou des organelles (phagosome, mitochondrie) jusqu’aux organismes
entiers (virus, bactéries, levure, mouche et vers). Les tentatives de construction de l’interactome humain entier ainsi que les méthodes d’analyse
globale des réseaux d’interactions sont brièvement présentées. Ces études ont permis de prédire les fonctions de protéines, d’étudier des voies de
signalisation ou métaboliques, de déterminer les mécanismes moléculaires de certaines pathologies (cancer, infections virales) et seront très utiles
pour identifier de nouvelles cibles thérapeutiques et pour la mise au point de nouveaux médicaments. Un des défis majeurs est maintenant
d’intégrer des données de différentes sources (interactome, transcriptome, phénome, localisome) pour passer des réseaux statiques aux réseaux
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dynamiques. La fusion d’un interactome viral à l’interactome humain a ainsi permis de simuler une infection virale. Cette approche ouvre la voie à
des études visant à élucider les bases moléculaires des pathologies humaines.
# 2008 Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Biological systems are made up of very large numbers of
different components interacting at various scales. Most
genes, proteins and other cell components carry out their
functions within a complex network of interactions and a
single component can affect a wide range of other
components. Interactions involved in biological processes
have been first characterized individually, but this ‘‘reductio-
nist’’ approach suffers from a lack of information about time,
space, and context in which the interactions occur in vivo. A
global, integrative, approach has been developed for several
years, focusing on the building of protein–protein interaction
maps (interactomes). These interaction networks are complex
systems, where new properties arise. This is part of an
emergent field, called systems biology which is ‘‘the study of
an organism, viewed as an integrated and interacting network
of genes, proteins and biochemical reactions which give rise to
life’’ (http://www.systemsbiology.org/). This interdisciplinary
approach, involving techniques from the mathematical,
computational, physical and engineering sciences is required
to understand complex networks. The systems biology
approach has been recently applied to the study of proteases
that operate in linear pathways or in regulatory circuits
forming a protease web [1,2]. The overexpression or the
reduced expression of a protease may perturb the protease web
leading either to further connections or to a loss of interactions
that may initiate and propagate pathological events [1].
Degradomics, the application of genomic and proteomic
approaches to identify the protease and protease-substrate
repertoires (degradomes) on an organism-wide scale, has been
developed by using specific DNA microarrays to analyze the
expression of proteases and inhibitors on a system-wide basis
(70-mer oligonucleotide probes for all 1561 human and
murine proteases, inactive homologues and inhibitors) and
mass spectrometry-based proteomics. Elucidating the sub-
strate degradomes of proteases will help to understand the
function of proteases in development and disease and the
identification of central proteases will identify new drug
targets and will help predicting the potential for side effects
due to the interconnected nature of the protease web [2,3].
Systems biology may also be helpful in medicine where
treatments focused on components are currently disease-
driven, aimed for normalcy and additive, whereas systems
biology looks at interrelationships and dynamics. Systems
approach will lead to individualized, time-sensitive, space-
sensitive and synergistic treatments taking into account the
multidimensional use of drugs [4].
An interactome is the whole set of molecular physical
interactions between biological entities in cells and organisms
and it is essential to understand how gene functions and
regulations are integrated at the level of an organism. Indeed,
many proteins mediate their biological function through protein
interactions, which are involved in supramolecular assemblies
(collagens, elastic fibers, actin filaments), in the building of
molecular machines (molecular motors, ribosomes, protea-
some) and in major biological processes such as immunity
(antigen–antibody interaction), metabolism (enzyme–substrate
interaction), signalling (interaction of messenger molecules,
hormones, neurotransmitters with their cognate receptors), and
gene expression (DNA–protein interactions). Furthermore, the
sequencing of the genome and advances in proteomics lead to
the identification of proteins of unknown functions. Interaction
networks might give clues on the functions of these newly
discovered proteins or on new functions of already identified
proteins. The systematic identification of interactions for a
given proteome has been proposed as a potentially informative
functional strategy [5,6]. In this review we will:
� describe high-throughput methods used to identify inter-

actions and to build interaction networks, including standard
format of reporting and a brief description of publicly
available interaction databases;
� give some examples of interaction networks from subcellular

compartments to whole organisms (yeast, bacteria, fly, worm);
� explain how to analyze the interaction networks to get

information on the biological functions of proteins, and to
predict the behavior of the network by simulating constraints
induced by physiopathological processes leading to a more
rational approach in therapeutics and drug discovery.

2. Building interaction networks

Manual curation and text mining are used to extract
interaction data from the literature. New interaction data are
collected by high throughput experimental methods, including
yeast two hybrid (Y2H), tandem-affinity mass spectrometry
(TAP-MS), protein complementation assays and protein arrays.
In addition, several methods aiming at predicting interactions
(inference, Rosetta stone) have been developed to establish
comprehensive maps of hypothetical protein–protein inter-
actions.

2.1. Experimental methods

In yeast two-hybrid, the two proteins to be tested for
interactions are expressed in yeast as hybrid fusion proteins
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([7]). The principle of the yeast two-hybrid system is the
reconstitution of a transcription factor via a protein–protein
interaction. The DNA binding domain of the transcription
factor is expressed as a hybrid protein fused to protein X (the
bait), the activation domain is fused to protein Y (the prey). If
the two proteins X and Y interact, the activation domain is in the
proper position to activate transcription of the reporter gene.
The preys can be individual fusion proteins tested in a one-on-
one fashion (the so-called ‘‘matrix’’ or ‘‘array’’ approach), or
they can be a mixture of protein fragments expressed from
cDNA libraries from which the interacting preys are selected
and identified by sequencing (the ‘‘screen’’ approach). Y2H
allows high throughput screening of protein interactions and is
widely used to build protein–protein interaction networks since
being reported by Fields and Song [8]. Further methods have
been developed to increase the efficiency and/or coverage of
Y2H, such as pooling-sequencing [9] and smart-pooling [10].
The first comprehensive analysis of protein–protein inter-
actions in Saccharomyces cerevisiae by Y2H was published in
2000 by Uetz et al. [11]. They screened nearly all of the 6000
predicted yeast proteins, expressed as DNA-binding domain
fusion proteins, against a library, and detected 957 putative
interactions involving 1004 S. cerevisiae proteins [11]. Another
comprehensive two-hybrid analysis to explore the yeast protein
interactome identified 4549 interactions among 3278 proteins
[12] but the overlap of the two yeast datasets was rather small
(141 interactions). A two-hybrid-based protein-interaction map
of the fly (Drosophila melanogaster) proteome has been built
by screening more than 10,000 predicted transcripts against
cDNA libraries to produce a draft map of 7048 proteins and
20,405 interactions, which was refined to give a higher
confidence map of 4679 proteins and 4780 interactions [13].
Y2H screens have also been used to establish the interactome of
C. elegans [14] and the first drafts of the human protein–protein
interaction network [9,15]. Three thousand one hundred and
eighty-six interactions among 1064 baits and 1075 prey
proteins were identified in the first dataset [15] and 2754
interactions involving 1549 proteins in the second one [9].

An affinity purification method coupled to mass spectrome-
try-based protein identification, referred to as tandem affinity
purification/mass spectrometry, has been first used at a large
scale by Gavin [16], who have identified 1440 proteins within
232 multiprotein complexes in S. cerevisiae [17]. TAP-MS
involves biochemical isolation of protein complexes formed
within yeast cells between tagged proteins (baits) and
endogenous yeast proteins and subsequent identification using
mass spectrometry TAP-MS has proven successful for retrieval
of protein complexes and interacting proteins in E. coli [18], the
protein interaction network of the TNF-a/NF-kB pathway in
human [19], and in yeast [17,20–22]. Gavin et al. [21] have
reported the first genome-wide screen for complexes in an
organism (S. cerevisiae), using TAP-MS and shown that the
ensemble of cellular proteins partitions into 491 complexes.
Another affinity purification approach referred to as lumines-
cence-based mammalian interactome (LUMIER) has been
developed to map protein–protein interaction networks
systematically in mammalian cells [23]. This strategy uses
Renilla luciferase enzyme fused to proteins of interest, which
are then co-expressed with individual Flag-tagged partners in
mammalian cells. Their interactions are determined by
performing a Renilla luciferase enzymatic assay on immuno-
precipitates using an antibody against Flag. Nine hundred and
forty-seven interactions were detected in the TGFb interaction
network using this approach [23].

Protein arrays are used to screen a large number of
interactions in parallel. Zhu et al. [24] have constructed a yeast
proteome microarray containing approximately 80% yeast
proteins (5800 proteins). The proteins were printed onto slides
at high spatial density and screened for their ability to interact
with proteins and phospholipids [24]. A quantitative protein
interaction network for the ErbB receptors has been studied
using protein microarrays in experimental conditions that allow
the calculation of the apparent equilibrium dissociation
constant for every interaction [25]. Both studies used
fluorescence as a detection method. We have developed protein
and glycosaminoglycan arrays probed by surface plasmon
resonance, which does not require the labelling of the
interactants and allows the calculation of kinetic and affinity
constants of the interactions. We used an automated microarray
platform able to monitor up to 400 interactions simultaneously
(Biacore Flexchip, GE Healthcare).

Protein-fragment complementation assays have been used to
perform a genome-wide in vivo screen for protein–protein
interactions [26]. Two proteins of interest are fused to
complementary fragments of a reporter protein (the enzyme
dihydrofolate reductase) and their physical interaction recon-
stitutes the activity of the enzyme. This method detects
structural and topological relationships between proteins,
providing an 8-nanometer resolution map of dynamically
interacting complexes in vivo. Two thousand seven hundred and
seventy interactions among 1124 endogenous proteins have
been identified in yeast, revealing a previously unknown space
of the yeast interactome and giving insights into cell
polarization and autophagy [26].

2.2. Literature curation: collecting existing knowledge

Interaction data can be retrieved from the literature by hand-
curation of papers by biologists. However, extraction of the large
amounts of interaction data between proteins from the literature,
more than 16 million citations in the Medline database [27],
requires mathematical and statistical methods to achieve a
comprehensive coverage. The automatic extraction of protein–

protein interactions ranges from simple statistical methods
relying on co-occurrences of genes or proteins to methods
employing syntactical or semantical analysis [27,28]. Current
approaches can be divided into computational linguistics-based
methods, rule-based methods and machine learning and
statistical methods. Several protein-protein interaction informa-
tion extraction systems and tools for biomedical literature mining
are available on the web [27]. Developed and applied natural
language processing and literature-mining algorithms have been
used to recover 6580 interactions among 3737 human proteins
from Medline abstracts [29].
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2.3. Computational prediction of protein–protein
interactions

These methods are complementary to high-throughput
experimental studies. They are based on the structural,
genomic, and biological context of proteins and genes in
complete genomes for the large-scale prediction of protein–

protein interactions, either direct physical interaction
between two proteins and/or an indirect functional associa-
tion of two proteins such as involvement in the same
biochemical pathway [30]. Protein interaction maps for
complete genomes can be generated using gene fusion events
[31,32]. The Rosetta stone method is a computational method
based on the analysis of gene fusion patterns of protein
domains. It relies upon the fact that some pairs of proteins
have homologs in another organism fused into a single
protein termed a Rosetta Stone sequence because it deciphers
the interaction between the protein pairs [32]. Six thousand
eight hundred and nine putative protein–protein interactions
have been inferred in Escherichia coli and 45,502 in yeast
using this method [32]. Kamburov et al. [33] have generated a
set of over two million predicted interactions encompassing
696,894 proteins in 184 species or strains using a variant of
this method.

Protein–protein interactions can be computationally pre-
dicted from co-evolution events. This approach is based on the
fact that large numbers of physically interacting proteins in one
organism have co-evolved so that their respective orthologs in
other organisms (interologs, [34]), interact as well [35].
Interaction maps from one species may indeed be useful in
predicting interactions in other species and may provide clues
on the function of proteins [35]. Lehner et al. [36] (2004)
described a network of over 70,000 predicted physical
interactions between around 6200 human proteins generated
using the data from lower eukaryotic protein–interaction maps.
Inferred human interactions based on orthology mapping of
protein interactions discovered in model organisms is stored in
the HomoMINT database (http://mint.bio.uniroma2.it/Homo-
MINT/) [37] and interologous networks of multiple organisms
(worm, fly, human, mouse, rat and yeast) are available
through the Interolog interaction database (I2D, http://
ophid.utoronto.ca/i2d/) [38] that includes 200,599 predicted
interactions.

3. Storage of large-set interaction data: interaction
databases

Many databases have been generated to store interaction
data. They differ by the amount and quality of data, the species
involved and the type of interaction (physical and/or functional
interactions). Several publicly available databases are dis-
cussed below. Interactions stored in IntAct (http://www.ebi.a-
c.uk/intact) [39] are derived from literature curation or direct
user submissions and are freely available. The IntAct Database
contains 170,831 binary interactions, 63,824 proteins, and
8827 experiments (August 2008). The molecular interaction
database (MINT, http://mint.bio.uniroma2.it) [40] stores
105,899 interactions involving 28,817 proteins and 3647
publications. This database has two sister databases, Homo-
MINT an inferred human network and Domino, a database of
interactions mediated by protein recognition modules. The
database of interacting protein (DIP, http://dip.doe-mbi.u-
cla.edu) [41] stores data that are curated manually by expert
curators and automatically using computational approaches.
Fifty six thousand six hundred and thirty eight interactions
involving 19,935 proteins in 204 organisms corresponding to
64,241 experiments are reported from 3516 articles and 34
other data sources. The biological general repository for
interaction datasets (BIOGRID, http://www.thebiogrid.org) is
a database of physical and genetic interactions [42]. Other
databases are specialized and cover a restricted interaction
space. MPACT, the Munich information center for protein
sequences (MIPS, http://mips.gsf.de/genre/proj/mpact) data-
base, is a manually annotated protein interaction database in
yeast [43]. The microbial protein interaction database
(MPIDB, http://www.jcvi.org/mpidb/) aims to collect and
provide all known physical microbial interactions. Twenty
three thousand five hundred and twenty one experimentally
determined interactions among proteins of 193 bacterial
species/strains are stored in the database [44]. MatrixDB
(http://matrixdb.ibcp.fr, Chautard et al. in revision) is focused
on the extracellular matrix. This database currently stores
1433 protein–protein and 109 protein–glycosaminoglycan
interactions. Interactions involving multimers (e.g. collagens)
and fragments issued from extracellular molecules
displaying biological activities of their own (matrikins/
matricryptins) are also reported. MatrixDB integrates extra-
cellular interaction data from a general interaction database
(human protein reference database, http://www.hprd.org),
from manual literature curation and from experiments
performed with protein and glycosaminoglycan arrays.
Several databases have formed the International molecular
interaction exchange (IMEx, http://imex.sf.net) consortium to
share the curation load and to regularly interchange data
curated to the same common standards. Interactions are
reported using the minimum information required for reporting
a molecular interaction experiment (MIMIx) [45]. The
database of polyanion-binding protein (http://pabp.bcf.ku.
edu/DB_PABP/) is focused on interactions of a subset of
proteins, the polyanion-binding proteins, with polyanions such
as DNA and heparin [46]. Currently, the DB-PABP has 512
proteins involved in 706 PA/PABP interactions retrieved from
205 literature references.

4. Existing interactomes: from subcellular organelles to
organisms

A high number of interaction networks has already been
built, ranging from molecular machines (26 S proteasome)
[47], subcellular organelles such as mitochondrion [48] and
phagosome [49], individual cells such as red blood cell [50]
to whole organisms such as yeast [11,12,17,20–22],
Drosophila melanogaster [13], Caenorhabditis elegans [14].
Furthermore, a cell interaction knowledgebase, an online
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database for innate immune cells, cytokines and chemokines,
has been developed recently (http://cell-interaction.bii.a-
star.edu.sg/) [51]. The first draft of the extracellular
interactome has been recently established (Chautard et al.,
in revision) and the interaction network of membrane
proteins involved in cell adhesion, the integrin adhesome,
is comprised of 156 components linked by 690 interactions
[52].

4.1. Micro-organisms

The interaction map of several microorganisms have been
established to understand their biology, their interference with
the cellular functioning, and to identify possible key interven-
tion points for the future development of therapeutics based on
their ability to modulate interactions involved in biological
functions. Interaction networks have been built for E. coli
[18,53] with more than 5000 interactions [18], the cyanobac-
terium Synechocystis [54], the nitrogen-fixing bacterium
Mesorhizobium loti [55], and for a number of bacteria
such as the gastric pathogen Helicobacter pylori [56],
Campylobacter jejuni, a major cause of gastroenteritis [57],
and Treponema pallidum, the syphilis spirochete [58].
Interaction maps of viruses are indeed smaller due to the
lower size of their proteome and they have been published for
the hepatitis C virus [59], and vaccinia virus, which was used as
the smallpox vaccine and is currently used as a mammalian
expression vector [60]. An analysis of the protein interaction
network of the malaria parasite Plasmodium falciparum has
identified 2846 interactions involving 25% of the predicted
P. falciparum proteins [61].

4.2. The human interactome

The first draft of human interaction map comprising over
70,000 predicted physical interactions between 6231 human
proteins was generated using data from lower eukaryotic
protein-interaction [36]. Automated and high throughput yeast
two-hybrid experiments identified 3186 interactions among
1705 proteins, resulting in a large, highly connected network
[15]. Using topological and Gene Ontology criteria, a scoring
system was developed to define 911 high-confidence inter-
actions among 401 proteins. Rual et al. [9] detected �2800
human binary protein–protein interactions, revealing more than
300 new connections to over 100 disease-associated proteins.
The number of interactions in humans has been estimated to be
�650,000 using a statistical procedure based on inference [62].
Available human protein interaction data are gathered in the
unified human interactome (UniHI) database (http://www.mdc-
berlin.de/unihiit) [63]. It is based on 10 major interaction maps
derived by computational and experimental methods and
includes more than 150,000 distinct interactions between more
than 17,000 unique human proteins. The full coverage of the
human interactome is complicated by the existence of different
cell types and cellular localizations in contrast to yeast. Issues
and strategies for the mapping of the human protein
interactome are discussed in [64].
5. How to make sense of protein interaction networks:
analysis of their topology

The analysis of proteins interaction networks sheds light on
the global organization of proteomes but can also place
individual proteins into a functional context. In interaction
networks, biomolecules are nodes and interactions connecting
two nodes (two biomolecules) are edges. Interaction networks
are visualized using softwares such as Cytoscape (http://
www.cytoscape.org/, Fig. 1). Quantitative description of the
networks helps to characterize various biological systems.
Network measures that allow the comparison and characteriza-
tion of networks (degree, degree distribution, shortest path and
mean path length, clustering coefficient) and their biological
significance have been reviewed [65]. The degree of a node
(biomolecule) corresponds to the number of interactions it has
with the neighboring molecules. It has been proposed that
highly connected proteins (hubs) with a central role in the
network architecture are three times more likely to be essential
in yeast than proteins with only a small number of interactions
[66], but it has been recently shown that protein connectivity
correlates with genetic pleiotropy rather than correlating with
essentiality [67]. The degree distribution approximates a power
law, which indicates that the network is comprised of a few
highly connected molecules and that most of the biomolecules
have only few links. This is the case in most biological
networks, which are called scale-free. They are highly robust to
random removal of a protein, but vulnerable to the targeted
removal of hub proteins, whose removal drastically alters the
network topology [68]. Distance in networks is measured with
the path length, which reflects the number of interactions you
have to pass through to connect two proteins [65]. The diameter
of a network is the maximum distance between two proteins.
Other measurements can be computed using freely available
softwares such as the centralities in biological networks
(CentiBiN) [69].

Two types of computational methods have been developed
for network-based prediction of protein function [6]. Direct
annotation schemes infer the function of a protein based on its
connections in the network because there is a correlation
between network distance and functional distance. The closer
the two proteins are in the network the more similar are their
functional annotations. The second type of approach relies
upon module-assisted schemes, which identify modules of
related proteins and then annotate each module based on the
known functions of its members [6]. Functional modules are
composed of many types of molecule. They have discrete
functions (protein synthesis, DNA replication, glycolysis) that
arise from interactions among their components (e.g. proteins,
nucleic acids, polysaccharides). A given molecule may belong
to different modules at different times [70]. Some module-
assisted functional annotation methods are based solely on
topology, whereas others integrate other data such as gene
expression or other genomic data [6]. Network analysis tools, a
toolbox for the analysis of biological networks, clusters, classes
and pathways is freely available on the web (http://rsat.
ulb.ac.be/neat/) [71].
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Fig. 1. The extracellular protein–protein and protein–glycosaminoglycan interaction network (859 biomolecules, 1707 interactions). Protein and glycosamino-
glycans are represented as squares (nodes), that are color-coded according to the number of their partners (from the lowest to the highest: blue, green, yellow, orange,
red and pink). Interactions are represented as links (edges).
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6. Some findings resulting from the analysis of protein–

protein networks

6.1. Clues on protein functions and pathways

Bioinformatic analysis of the protein interaction network in
yeast defined 232 distinct multiprotein complexes and proposed
new cellular roles for 344 proteins, including 231 proteins with
no previous functional annotation [17]. Analysis of the
topological features of cancer proteins in the human
interactome has shown that proteins known to be susceptible
to mutations leading to cancer show an increase in the number
of proteins they interact with [72]. These proteins also appear to
participate in central hubs rather than peripheral ones, and
participate in networks that form the backbone of the proteome
[72]. Functional classification of the proteins participating in
nine canonical signalling pathways in the Drosophila inter-
actome (wingless, hedgehog, notch, decapentaplegic, seven-
less, torso, epidermal growth factor receptor, insulin and toll)
identified twelve classes which potentially correspond to
twelve functional modules and the participation of ten potential
new actors to Drosophila signalling was predicted [73]. Each
signalling pathway was organized in two to three different
signalling modules. The organization of the signalling
pathways into different modules may provide the flexibility
necessary to the functioning of the same signalling pathway in
different spatial, cellular or developmental contexts [73].

6.2. Physiological processes

Aging is associated with many diseases, such as cancer,
diabetes, cardiovascular diseases and neurodegenerative dis-
orders and this precludes the investigation of the mechanisms
underlying the aging process by focusing on a single gene or a
single biochemical pathway. The dynamic modular structure of
the protein–protein interaction network during human brain
aging has been investigated using a new analytical method,
developed to integrate the interactome and the transcriptome
[74]. This study of the protein–protein interaction network
during aging has identified two modules associated with
the cellular proliferation (enriched in development- and
differentiation-related genes) to differentiation (enriched in
nuclear transport and cell-cycle genes) temporal switch that
display opposite aging-related changes in expression [74,75].
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Some modular changes might be reversible and genes
connecting different modules through protein–protein inter-
actions are more likely to affect aging/longevity. Network
simulations further suggest that aging might preferentially
attack key regulatory nodes that are important for the network
stability [75].

6.3. Unraveling the molecular basis of disease and drug
discovery

Protein networks are increasingly serving as tools to unravel
the molecular basis of diseases. There are promising
applications of protein networks to disease in four major
areas: (i) identifying new disease genes, (ii) the study of their
network properties, (iii) identifying disease-related subnet-
works, and (iv) network-based disease classification [76]. The
topological analysis of the human protein–protein interaction
network demonstrated that the proteins associated to hereditary
disease-genes are characterized by a larger degree, tendency to
interact with other disease-genes, more common neighbours
and quick communication with each other. An automatic
classifier capable of identifying genes more likely to be
involved in hereditary disease based on the topological patterns
predicted 178 novel disease-genes [77].

6.3.1. Neurodegenerative disorders
Protein–protein interaction networks associated with cau-

sative proteins of six neurodegenerative disorders (Alzheimer’s
disease, Parkinson’s disease, amyotrophic lateral sclerosis,
Huntington’s disease, dentatorubropallidoluysian atrophy and
prion disease) have been investigated to better understand the
molecular pathogenesis of these diseases [78]. They found 19
proteins common to the six diseases, which are mainly involved
in the apoptosis and mitogen-activated-protein kinase signall-
ing pathways [78]. Lim et al. [79] described a protein–protein
interaction network for inherited human ataxias, a group of
diseases characterized by degeneration of cerebellar Purkinje
cells. Many ataxia-causing proteins share interacting partners
and the majority of the ataxia-causing proteins interact either
directly or indirectly. Three proteins involved in RNA binding
or splicing represent one of the main hubs in the ataxia network
and interact with several different ataxia-causing proteins. This
suggests that a subset of inherited ataxias might represent
disorders of RNA splicing [79].

6.3.2. Infectious diseases
Intraviral, intrabacterial or intraparasitic interactions are of

major interest to decipher the biology of these organisms, but
infection triggers dramatic changes in the host and the study of
host–pathogen interactions are of major interest to understand
the molecular basis of infectious diseases. A virus–host
interactome, or virhostome, describes all the ways in which
the proteins of a virus interact with those of its host [80]. The
study of herpes viral protein networks and their interaction with
the human proteome has shown that two herpes viruses, Kaposi
sarcoma-associated herpes virus and varicella-zoster virus,
shared protein interaction network topologies that were distinct
from the cellular networks. Indeed, viral networks should be
more resistant to the removal of a highly-connected protein than
the human, cellular, network. According to the simulations,
infection may result in a change to the viral protein interaction
network that renders its topology more similar to that of the host
cell [81]. A comprehensive mapping of interactions among
Epstein-Barr virus proteins and of interactions of viral proteins
with human proteins (virhostome for the Epstein-Barr virus)
showed that human proteins targeted by viral proteins were
enriched for highly connected proteins in the human
interactome (consistent with the hypothesis that hub protein
targeting is an efficient mechanism to convert pathways to virus
use), and for proteins with relatively short paths relative to all
other proteins in the human interactome network [82].

The first comprehensive study of the landscape of human
proteins interacting with pathogens integrate 10,477 human-
pathogen protein–protein interactions for 190 pathogen strains
from seven public databases. Nearly all of the human-pathogen
protein–protein interactions (98.3%) involve viral systems [83].
Both viral and bacterial pathogens preferentially interact with
two classes of human proteins: proteins with many interacting
partners and proteins that lie on many shortest paths (central to
many pathways) in the human protein–protein interaction
network. Many pathogens target the same processes in the
human cell, even if they interact with different proteins,
including cell cycle regulation, nuclear transport (import of
pathogen proteins into the nucleus in an attempt to subvert the
host’s DNA replication and transcription machinery), and
manipulation of host cellular programs such as apoptosis,
immune response and activation of NF-kB pathway [83].

6.4. Therapeutic applications and drug discovery

Most drugs act by binding to specific proteins to modulate
their biological activities, with affects biological processes. The
search tool for interaction of chemicals (Stitch, http://
stitch.embl.de/) database [84] contains protein–chemical
interaction data for over 68,000 chemicals, including 2200
drugs, and connects them to 1.5 million genes across 373
genomes. Yildirim et al. [85] generated a bipartite graph
composed of US Food and Drug Administration–approved
drugs and proteins linked by drug–target binary associations to
understand drug targets in the context of cellular and disease
networks. The analysis of the network showed that drug targets
occupy certain regions in the interactome networks, and their
topological signatures are different compared with essential
proteins and that most drugs are palliative and do not directly
perturb the protein(s) corresponding to the underlying cause of
disease [85]. A global map of the large-scale organization of all
US approved drugs and associated human therapies has been
built, bringing new insights on possible strategies for future
drug development [86].

7. Conclusion

The availability of protein–protein interaction networks has
significantly increased our understanding of the molecular

http://stitch.embl.de/
http://stitch.embl.de/
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mechanisms underlying physiopathological processes. The
integration of functional genomic and proteomic data to obtain
dynamic networks will further improve the level of confidence
of biological hypotheses. A particular challenge in integrating
physical and genetic maps is to reconcile the variety of
interaction types (i.e. genetic and physical interactions) that are
currently available [87]. Interactome, phenome, and trans-
criptome mapping data were integrated for the C. elegans
germline [88]. Protein structure information have been
combined with protein interaction data to identify residues
that form part of an interaction interface, predicting 1428
mutations of the online mendelian inheritance in man database,
to be related to an interaction defect [89]. A human phenome–

interactome network of protein complexes implicated in genetic
disorders has been built [90] and a human protein interolog
network has been reconstructed using evolutionary conserved
network and computational methods to integrate heterogeneous
biological data (subcellular localization, tissue-specificity, cell-
cycle stage and domain–domain combination) [91]. Beyond
protein–protein interactions, the linkage of all genetic disorders
(the human disease phenome) with the complete list of disease
genes (the disease genome), results in a global view of the
diseasome, the combined set of all known disorder/disease gene
associations [92]. The virhostome for the Epstein-Barr virus has
been combined with a gene-disease map to generate the
Epstein-Barr virus diseasome network, a map of the
interconnections between viruses, proteins, genes and diseases
[80]. A promising application of these networks is to
provide information and to formulate hypotheses on human
diseases and therapies (drug discovery and targeting) [76].
Another key issue for future network-based analyses is the
dynamics of interaction networks. The current dynactome
project (http://dynactome.mshri.on.ca/) aims to analyze the
dynamic protein interaction network in normal and malignant
cells.
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