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Abstract: In the context of high-throughput screening projects where the goal is the identification of low-
frequency positives, pooling has only advantages and no drawbacks: it reduces the number of tests and 
yet provides critical duplication of the individual experiments, thereby correcting for experimental noise 
and allowing secure identification of both positive and negative occurrences. The main difficulty consists 
in designing the pools in a manner that is both efficient and robust: this is known as the group testing 
problem, or pooling problem. In this paper, we present a new non-adaptive combinatorial pooling 
design: the "shuffled transversal design" (STD), which relies on prime numbers, and we prove that it 
allows unambiguous decoding of noisy experimental observations. This design is highly flexible, and can 
be tailored to function robustly in a wide range of experimental settings (i.e., numbers of objects, 
fractions of positives, and expected error-rates). Furthermore, we show that STD compares favorably, in 
terms of efficiency, to the previously described non-adaptive combinatorial pooling designs. 
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1 Introduction 

With the availability of complete genome sequences, biology has entered a new era. Relying on the 
sequencing data of genomes, transcriptomes or proteomes, scientists have been developing high-throughput 
screening assays and undertaking a variety of large scale functional genomics projects. While some projects 
involve quantitative measurements, others consist in applying a basic yes-or-no test to a large collection of 
samples or "objects", – be they individuals, clones, cells, drugs, nucleic acid fragments, proteins, peptides… 
A large class of these binary tests aims at identifying relatively rare events. The main goal is of course to 
obtain information as efficiently and as reliably as possible. Typically, this is achieved by minimizing the 
cost of the basic assay in terms of time and money, and automating and parallelizing the experiments as 
much as possible. A major difficulty stems from the fact that high-throughput biological assays are usually 
somewhat noisy: reproducibility is a known problem of microarray analyses, and both false positive and false 
negative observations are to be expected in binary type experiments. These experimental artifacts should be 
identified and properly treated. A clean way to deal with the issue consists in repeating all tests several times, 
but this is usually prohibitively expensive and time-consuming. A more practical approach, in the case of 
binary tests, consists in retesting all positive results obtained in a first round. This strategy identifies most of 
the false positives at a reduced cost, but is powerless with regard to false negatives, leaving us in need of a 
better solution. 

 In the case of binary experiments testing for rare events, an intuitively appealing strategy consists in 
pooling the samples to minimize the number of tests. It requires three conditions. First, the objects under 
scrutiny must be available individually, in a tagged form. For example, a cDNA library in bulk is not 
exploitable, but a collection of cDNA clones or of cloned coding regions, such as the one produced by the C. 
elegans ORFeome project [18], is fine. Second, it must be possible to test a pool of objects in a single assay 
and obtain a positive readout if at least one of the objects is positive. For example, this is the case when 
searching for a specific DNA sequence by PCR in a mixture of molecules: a product will be amplified if at 
least one of the pooled molecules contains the target sequence. Third, pooling is especially desirable and 
efficient when the fraction of expected positives is small (at most a few percent). 

 Under these conditions, pooling strategies can be applied, and the difficulty then consists in choosing a 
"good" set of pools. This being an intuitive but rather vague goal, it must be formalized. An initial simple 
formulation, known as the group testing problem (or pooling problem), is the following. Consider a set of n 
events which can be true or false, represented by n Boolean variables. Let us call “pool” a subset of variables. 
We define the value of a pool as the disjunction (i.e., the logical OR operator) of the variables that it contains. 
Let us assume that at most t variables are true. The goal is to build a set of v pools, where v is small 
compared to n, such that by testing the values of the v pools, one can unambiguously determine the values of 
the n variables. 

 If the pools must be specified in a single step, rather than incrementally by building on the results of 
previous tests, the problem is called "non-adaptive". Although adaptive designs can require fewer tests, non-



 

adaptive pooling designs are often better suited to high-throughput screening projects because they allow 
parallelization and facilitate automation of the experiments, and also because the same pools can be used for 
all targets, thereby reducing the total project cost. 

 The ability to deal with noisy observations is an important added benefit to using a pooling system, 
compared to the classical individual testing strategy. Indeed, noise detection and correction capabilities are 
inherent in any pooling system, because each variable is present in several pools, hence tested many times. 
Depending on the expected noise level, the redundancy can be chosen at will, and simply testing a few more 
pools than would be necessary in the absence of noise results in robust error-correction. It should be noted 
that minimization of the number of pools and noise correction are two conflicting goals: increasing noise 
tolerance generally requires testing more pools. Designing a set of pools requires balancing these two 
objectives, and finding the right compromise to suit the application. 

 Other application-dependent constraints may be imposed. In particular, the pool sizes are often limited by 
the experimental setting. For example, in the context of the C. elegans protein interaction mapping project 
led by Marc Vidal [21, 8], it is estimated that, using their high-throughput two-hybrid protocol, reliable 
readouts can be obtained with pools containing 400 AD-Y clones, or perhaps up to 1000 by tweaking the 
assay (Marc Vidal, personal communication). 

 Many groups have used with some success variants of the simple "grid" design, which consists in 
arraying the objects on a grid and pooling the rows and columns [e.g. 10, 22, 6]. However, although it is 
better than no pooling, this rudimentary design is vulnerable to noise and behaves poorly when several 
objects are positive, in addition to being far from optimal in terms of numbers of tests. 

 In answer to its shortcomings, more sophisticated error-correcting pooling designs have been proposed 
(see section 4.2). Some of these designs are very efficient in terms of numbers of tests, but lack the 
robustness and flexibility that most real biological applications require. Others are more adaptable and noise-
tolerant at the expense of performance. 

 In this paper, we present a new pooling algorithm: the "shuffled transversal design" (STD). This design is 
highly flexible: it can be tailored to allow the identification of any number of positive objects and to deal 
with important noise levels. Yet it is extremely efficient in terms of number of tests, and we show that it 
compares favorably to the previously described pooling designs. 

 The paper is organized as follows. STD is defined in section 2. In section 3, it is shown to be an error-
correcting solution to the pooling problem. In section 4, the theoretical performance of STD is evaluated and 
compared with the main previously described deterministic pooling designs. Finally, section 5 summarizes 
the results and discusses future directions. 

2 The Shuffled Transversal Design 

2.1 Preliminaries 

The following notations are used throughout this paper, in accordance with the notations from [1]. 

Let n ≥ 2, and consider the set An ={A0, …,An-1} of n Boolean variables. 

We will call "pool" a subset of An . We say that a pool is "true", or "positive", if at least one of its elements is 
true. 

Let us call "layer" a partition of An . 

Let q be a prime number, with q < n.  

We define the "compression power" of q relative to n, noted Γ(q,n), as the smallest integer γ such that 
qγ+1 ≥ n. We will simply write Γ for Γ(q,n) whenever possible. 

Let σq be the mapping of {0,1}q onto itself defined by: 
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Note that σq is a cyclic function of order q: σq
q is the identity function on {0,1}q. 

The matrix representation: Any set of pools can be represented by a Boolean matrix, as follows. Each 
column corresponds to one variable, and each line to one pool. The cell (i,j) is true (value 1) if pool i contains 
variable j, and false (value 0) otherwise. 

Example: Consider the n=9 variables A 9 = {A0, A1,…, A8}. The following matrix defines a set of 3 pools: 

!
!
!

"

#

$
$
$

%

&

=

100100100

010010010

001001001

0
M

 

The pools are {A0,A3,A6} (defined by the first line), {A1,A4,A7} (second line), and {A2,A5,A8} (third line). In 
fact, this set of pools clearly constitutes a layer. 

2.2 Definition of STD 

A pooling design is a method to construct a set of pools. When the set of pools can be partitioned into 
subsets, each forming a partition of the set of variables, the pooling design is said to be "transversal". STD is 
a transversal pooling design: given a prime number q with q<n, and k such that k≤q+1, it constructs a set 
STD(n; q; k) of pools composed of k layers. The first q possible layers have a unified construction: they each 
contain q pools of n/q or (n/q)+1 variables, and are globally interchangeable. The last buildable layer has a 
specific construction, and is less regular, yet it complements the others nicely. The intuitive idea behind STD 
consists in shuffling the variables as much as possible between any two layers, in such a way that the co-
occurrences of variables (i.e., the number of pools in which any pair of variables can occur) is limited, and 
the intersections between pools are of roughly constant size. A formal construction of STD(n; q; k) follows. 

For every j  {0,…,q}, let Mj be a q×n Boolean matrix, defined by its columns 
1,0,

,..., !njj CC  as follows: 
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Let L(j) be the set of pools of which Mj is the matrix representation. Note that each column ijC ,
 has exactly 

one occurrence of '1' and (q-1) occurrences of '0'. The index of the '1' identifies the (single) pool of L(j) which 
contains variable Ai. Therefore, in a given set of pools L(j), each variable is present in exactly one pool, that 
is to say L(j) constitutes a partition of An : L(j) is a layer. 

Finally, for k ∈ {1,2,..., q+1}, STD(n; q; k) is defined as: STD(n; q; k) = U
1

0

)(
!

=

k

j

jL . 

 Example: Consider again the variables A 9, and let q=3 (hence Γ=1). M0 is as defined in 2.1, and M1, M2, 
M3 are: 
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The corresponding layers of pools are the following: 

Layer 0: L(0) = {{A0,A3,A6}, {A1,A4,A7}, {A2,A5,A8}} 

Layer 1: L(1) = {{A0,A5,A7}, {A1,A3,A8}, {A2,A4,A6}} 

Layer 2: L(2) = {{A0,A4,A8}, {A1,A5,A6}, {A2,A3,A7}} 

Layer 3: L(3) = {{A0,A1,A2}, {A3,A4,A5}, {A6,A7,A8}}. 

STD(9; 3; 2) is the following set of pools: STD(9; 3; 2) = L(0) ∪ L(1). 

 Remark: The method builds at most q+1 layers: indeed, if we discard the last particular layer L(q) and 
attempt to extend the STD construction to any j, it becomes cyclic of order q: for every j, L(j+q)  = L(j). 

3 Properties of STD 

In this section, we establish an important theorem, leading to two corollaries which show that STD 
constitutes a solution to the pooling problem described in section 1, and that it can be used to detect and 
correct noisy observations. We then establish another property of STD, which is noteworthy albeit not 
directly related to the pooling problem. 

3.1 Co-occurrence of Variables 

So far we have considered the variables that are contained in a given pool. Dually, we may consider the set of 
pools that contain a given variable. For k ∈ {1,2,..., q+1}, we will note poolsk(i) the set of pools of 
STD(n; q; k) that contain variable Ai:  i  {0,…,n-1}, poolsk(i) = {p  STD(n; q; k) | Ai  p}. 

 Theorem 1: Recall that q is prime. 

 i1,i2  {0,…,n-1}, [i1i2]  [Card(poolsq+1(i1)  poolsq+1(i2))    Γ(q,n)]. 

 Proof: Let i1,i2  {0,…,n-1} with i1i2. Since each layer of pools is a partition of An , there cannot be more 
than one pool per layer containing both Ai1 and Ai2. Furthermore, there exists a pool in layer L(j) that 
contains both Ai1 and Ai2 if and only if the columns for Ai1 and Ai2 are equal in Mj, that is to say 

21 ,, ijij CC = . Therefore the number of pools of STD(n; q; q+1) that contain both i1 and i2, 

Card(poolsq+1(i1)  poolsq+1(i2)), is the number of values of j in {0,…,q} such that 
21 ,, ijij CC = . However, 
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Furthermore, since i1i2, there exists at least one value c  {0,…,Γ} such that q
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where % denotes the modulus (these are the unique decompositions of i1 and i2 in base q). Hence, 
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would lead to i1 – i2 = 0, which is contradictory with the hypothesis that i1i2. 

 It follows that the above (1) can be seen as a non-zero polynomial (in j) of degree at most Γ on GF(q). As 
is well-known, such a polynomial has at most Γ roots in GF(q). That is to say, there are at most Γ values of j 
in {0,…,q-1} such that a pool of L(j) contains both Ai1 and Ai2. This proves the theorem if 

21 ,, iqiq CC ! . 

Furthermore, if 
21 ,, iqiq CC = , the coefficient of jΓ in (1) is zero by definition of s(i,q), and (1) is of degree at 

most Γ-1. Therefore if Ai1 and Ai2 are elements of the same pool in L(q), then there are at most Γ-1 pools in 
L(0), …,L(q-1) that contain both Ai1 and Ai2. This concludes the proof of the theorem. 

 Example: Consider again the example n=9, q=3, k=4, for which the layers L(0), L(1), L(2), and L(3) are 
known (see 2.2). The set of pools containing A0 is: 

pools4(0) = {{A0,A3,A6},{A0,A5,A7},{A0,A4,A8},{A0,A1,A2}}. 

One can easily see that A0 is present exactly once with every other variable. In fact, each pair of variables is 
present in exactly 1 (=Γ(3,9)) pool, in conformity with theorem 1. 

 Remark: The property holds a fortiori when k < q+1, i.e. when considering STD(n; q; k) instead of 
STD(n; q; q+1). 

3.2 A Solution to the Pooling Problem 

Corollary 1: Let t be an integer such that tΓ(q,n)  q. Let k=tΓ+1, and consider the set of pools STD(n; q; k). 
Suppose that the value of each pool has been observed, and that there are at most t positive variables in An . 
Then, in the absence of noise (i.e., if all pool values are correctly observed), the value of every variable can 
be identified. 

Proof: Consider the following algorithm, which tags variables as negative or positive. 

Algorithm 1: all the variables present in at least one negative pool are tagged negative; any variable present 
in at least one positive pool where all other variables have been tagged negative, is tagged positive. 

We show that this algorithm correctly identifies the value of each and every variable. 

 Let Ai be a negative variable. Ai is present in exactly k pools: one pool in each layer. Theorem 1 asserts 

that no variable other than Ai is present in more than Γ of these tΓ+1 pools. Therefore, since at most t 

variables are positive, Ai is present in at least one pool where no positive variable is present. Consequently, 

examination of this pool yields a negative answer (since all observations are correct), which leads algorithm 
1 to tag Ai negative. This shows that every negative variable is correctly identified. 

 Now let Ai be a positive variable. Since there are no observational errors, all pools containing Ai are 

positive. Again according to theorem 1, no other variable is present in more than Γ of these tΓ+1 pools. 
Therefore, since there are at most t-1 other positive variables, Ai is present in at least Γ+1 pools where all 

other variables are negative (and have been tagged negative, according to the above paragraph). This shows 
that every positive variable is also identified, and therefore proves the corollary. 

 Example: Consider again our example STD(9; 3; 2) = {{A0,A3,A6}, {A1,A4,A7}, {A2,A5,A8}, 
{A0,A5,A7}, {A1,A3,A8}, {A2,A4,A6}}. Let t=1, and suppose that a single variable in A 9 is positive. For 
reasons of symmetry, the name of that variable is inconsequent: all are equivalent. Let us suppose that the 
only positive variable is A8. Then pools {A0,A3,A6}, {A1,A4,A7}, {A0,A5,A7}, and {A2,A4,A6} are negative, 
which shows that variables A0, A1,…, A7 are negative; and pools {A2,A5,A8} and {A1,A3,A8} are positive, 



 

which each prove that A8 is positive (given that A2, A5, A1 and A3 have been shown to be negative). 

 Remark: If more than t variables are positive, this fact is revealed: clearly, at most n-(t+1) variables are 
tagged negative, contrary to when there are at most t positives. In fact, all tags produced by the above 
algorithm are still correct, but some variables may not be tagged at all: these variables are called 
"unresolved", or "ambiguous". 

3.3 Dealing with Noise 

As stated in the introduction, pooling designs have an intrinsic potential for noise-correction, due to the 
redundancy of variables. In the case of STD, this potential can be taken advantage of by simply testing a few 
extra layers of pools and using a modified algorithm, as shown here. 

Corollary 2: Let t and E be integers such that tΓ(q,n)+2E  q, and let k=tΓ+2E+1. Consider the set of pools 
STD(n; q; k), and suppose that the value of each pool has been observed. Furthermore, suppose that there are 
at most t positive variables in An , and that there are at most E observation errors. Then, all errors can be 
detected and corrected, and the value of every variable can be identified. 

Proof: Consider the following tagging algorithm. 

Algorithm 2: all the variables present in at least E+1 negative pools are tagged negative; any variable present 
in at least E+1 positive pools where all other variables have been tagged negative, is tagged positive. 

 The proof is similar to that of corollary 1 (see section 3.2): we show that algorithm 2 correctly tags every 
variable. In this case, theorem 1 shows that each negative variable is necessarily present in at least 2E+1 
negative pools. Since there are at most E observation errors, it follows that at least E+1 of these negative 
pools are correctly observed. Therefore, algorithm 2 tags all negative variables correctly. Conversely, a 
positive variable Ai appears in at least tΓ+E+1 positive pools (since there are at most E errors), of which at 
most (t-1)Γ contain at least one other positive variable (according to theorem 1). Therefore Ai is present in at 
least (tΓ+E+1) - (t-1)Γ = Γ+E+1 positive pools where all other variables are negative. Since these negative 
variables have been correctly tagged as such (as shown above), Ai is tagged positive. This shows that 
algorithm 2 also correctly tags all positive variables. 

 Finally, any observation which is contradictory with the obtained tagging is necessarily erroneous. In 
other words, false negative and false positive observations are identified. 

Remarks:  

 1. Note that few restrictions are imposed when choosing the value of the parameter q: it must simply be a 
prime number smaller than n. Consequently, STD can be used successfully even when very high noise levels 
are expected, by picking a large value for q. Of course, as is to be expected in low signal-to-noise situations, 
this high corrective power comes at the price of lower compression performance, since larger q values mean 
more pools per layer. 

 2. As in the noiseless case discussed in section 3.2, algorithm 2 still tags variables correctly if more than t 
variables are positive, although some variables may be unresolved. However, if there are more than E 
observation errors, problems may occur (e.g., a positive variable might be "mis-tagged" negative, or a 
variable might be tagged both positive and negative). Therefore, in real applications where the number of 
errors will probably exceed E in at least a few instances, more sophisticated tagging algorithms should be 
used (paper in preparation). 

3.4 Even Redistribution of Variables 

We have just shown that STD constitutes a solution to the pooling problem in the presence of experimental 
noise. Although it digresses from the main focus of this paper, the following theorem provides an interesting 
characterization of STD, basically showing that the STD layers work well together, information-wise. 

 Theorem 2: Let m ≤ k ≤ q and consider a set of m pools {P1,…,Pm} ⊂  STD(n; q; k), each belonging to a 
different layer. Then: 
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 Proof: Let j1,…,jm ∈ {0,…,k-1} be the layer numbers and p1,…,pm ∈ {0,…,q-1} be the pool indexes that 
define {P1,…,Pm}: for every h ∈ {1,…,m}, Ph  contains all variables of index i ∈ {0,…,n-1} such that 
s(i,jh) ≡ ph mod q. 
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If m ≥ Γ+1: consider the square sub-matrix composed of the first Γ+1 rows of the left member. Since 
P1,…,Pm belong to different layers, the jh values are all distinct. Therefore, recalling that q is prime, this sub-
matrix can be seen as a Vandermonde matrix with elements in the Galois field GF(q): it is nonsingular. This 
shows the existence of a unique tuple of values for α0,…,αΓ ∈ {0,…,q-1} satisfying the first Γ+1 
congruences of (2). The remaining m-(Γ+1) congruences may or may not be satisfied with these α0,…,αΓ 

values, and the corresponding !
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qi $  might be too large (i.e. ≥ n); but in any case, there is at most one 

value of i satisfying the system: the theorem is proved when m ≥ Γ+1 (given that in this case λm = 0). 

Otherwise, m ≤ Γ: consider the square sub-matrix composed of the first m columns of the left member. 
Again, this sub-matrix is a Vandermonde matrix in GF(q), hence it is nonsingular. Consequently, given any 
values for αm,…,αΓ , there exists a unique tuple of values for α0,…,αm-1 in {0,…,q-1} satisfying (2) (simply 
shift the terms in αm,…,αΓ to the right member). The question therefore becomes: how many tuples of values 
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For each c ∈ {m,…,Γ}, the branch ending at (αc < βc) yields βc⋅q
(c-m) different tuples. Indeed, for d > c 

αd = βd in this branch, and α0,…,αm-1 are bound to αm,…,αΓ: there are βc possible choices for αc , and q 
choices each for αm,…,αc-1. As to the final branch, it can yield at most one solution, given that all the α 
values are set or bound in this branch. 

Consequently, there are a total of λm =!
"

=

#$
mc

mc

c
q%  or λm+1 solutions: the theorem is also proved when 

m ≤ Γ. 



 

Remarks: 

 1. λm depends only on m and not on the choice of P1,…,Pm; hence this theorem can be expressed simply 
as follows: each pool is redistributed evenly in every other layer, and furthermore the intersection between 
any two or more pools from different layers is also redistributed evenly in the remaining layers. This property 
is very interesting because it means that knowing that any given pool is positive doesn’t bring any 
information regarding which pools of another layer will be positive; hence, the information content of the 
other layers remains high. 

 2. Note that the theorem specifies k ≤ q rather than q+1: the last layer that can be built with STD, L(q), is 
particular and does not satisfy theorem 2. 

4. Theoretical Evaluation of STD 

To evaluate and compare pooling designs, a fair performance measure is needed. A widely-used and 
reasonable choice consists in considering the number of pools required to guarantee the correction of all 
errors and the identification of all variables' values: we call this the "guarantee requirement". This criterion is 
used here to study the behavior and performance of STD, and to compare it to the main published 
deterministic error-correcting pooling designs. 

4.1 Guaranteed Performance of STD 

We define the "gain" of a design as the ratio between the number of variables and the number of pools: n/v. 
The gain is called "guaranteed gain" if the guarantee requirement is satisfied. This measure is particularly 
useful for comparing settings where n varies. 

 Given the specifications of an application, i.e. values for n (total number of objects to be tested), t 
(number of expected positives), and E (expected number of errors to be corrected), STD can propose many 
sets of pools, by selecting various values for the parameter q and setting the number of layers k accordingly 
(as specified by section 3.3). These pool sets are of different sizes, but all satisfy the guarantee requirement. 
The optimal choice, qopt, is the one with maximum guaranteed gain. Let qmin be the smallest possible q such 
that t(q,n)+2E  q, and let max = qmin,n). At a fixed value for , the number of layers k necessary to satisfy the 
guarantee requirement is constant; therefore the best gain at fixed  is always obtained with the smallest q 
whose compression is . It follows that qopt can be identified easily by finding the smallest q for each value of  
in {1,...,max }, and calculating the corresponding gain. In practice we often have qopt = qmin, but this is not 
compulsory, as illustrated by Table 1 in the case n=10 000, t=5, E=0. 

 

q  k v gain 

 ≤13 ≥3 ≥16 k>q+1, can’t use these values 
17 3 16 272 36.8 
19 3 16 304 32.9 
23 2 11 253 39.5 
29 2 11 319 31.3 
… 2 11 … … 
97 2 11 1067 9.4 
101 1 6 606 16.5 

Table 1: Choosing the optimal value for the number of pools per layer, q. This table shows the 
gains obtained with various q values, when the total number of variables to be tested is n=10000 
and the number of expected positives is t=5, in a noiseless experiment (E=0). is the compression 
power (i.e. logarithm of n in base q, see section 2.1), k is the number of layers, v is the number of 
pools (i.e. kq), and the gain is defined as n/v. By construction, STD requires k≤q+1; and to 
guarantee the identification of t positives while correcting E errors, section 3.3 showed that we 
must choose k=t+2E+1; in this example, k=5+1. Often, the smallest useable q (i.e., satisfying 
k≤q+1), qmin, yields the highest gain, but this is not always the case. In this example, qmin=17, but 
q=23 (smallest q such that =2) yields the highest gain: 39.5. 

 The above method allows to easily calculate the best guaranteed gain that STD can offer, in any specified 



 

 

(n,t,E) setting. Therefore, the behavior of STD can be studied under various angles. In particular, one 
interesting approach consists in using fixed values for t and E, and studying the evolution of the best 
guaranteed gain (obtained using qopt) when n increases. For example, Table 2 displays the number of pools 
necessary to identify three positives and correct two errors, when the number of variables ranges from 100 to 
106. When n increases, the gain increases substantially and fairly regularly: it is multiplied by a factor 
ranging from 6 to 9 every time n gains an order of magnitude. Note that in a real application, the fact that the 
pool sizes are generally constrained by practical considerations can result in forcing to use values of q > qopt 
and hence limit the gain. 

 

N qopt pool size k v gain 

100 11 9 8 88 1.1 
1000 11 91 11 121 8.3 
104 13 769 14 182 55 
105 19 5263 14 266 376 
106 19 52631 17 323 3096 

Table 2: Gains obtained when the identification of 3 positives and the correction of 2 errors is 
guaranteed (t=3, E=2). For each value of n (total number of variables), the optimal q value qopt has 
been calculated, as well as the associated pool size, the number of layers k, the total number of 
pools v, and the gain. 

4.2 Comparison with previous work 

In this section, after a brief overview of the known construction methods, we compare STD, in terms of 
flexibility and performance under the guarantee requirement, to the main published error-correcting 
deterministic pooling designs. In general, the guaranteed gains can be difficult to compare analytically, 
because the numbers of pools and variables can be defined by formulas that are often rather involved. 
However, each paper describing a new design typically holds a numerical example, which would hardly be 
disadvantageous to the described design. Therefore, when the methods cannot be easily compared, it seems 
fair to use each paper's numerical example for comparison with STD. Note that the guarantee requirement 
cannot be satisfied by random designs [e.g. 5], which are consequently not studied here. 

 Detailed reviews of deterministic pooling designs can be found in [1, 16, 9], and we will only very briefly 
recapitulate them here. Broadly speaking, there are three main construction methods: set packings, 
transversal designs, and direct constructions. In fact, the non-adaptive pooling problem is strongly connected 
to the problem of constructing superimposed codes [12], which was analyzed forty years ago to deal with the 
questions of representing rare document attributes in an information retrieval system and of assigning 
channels to relieve congestion in shared communications bands. The focus is different: each variable is seen 
as a code word and the goal is to maximize the number of code words n at fixed length v rather than the other 
way around; and these problems were noiseless, contrary to our own situation where error-correction is 
critical. Yet [12] had already suggested constructions of superimposed codes based on set packings, as well 
as constructions based on q-nary codes (which are in fact transversal designs) and on compositions of q-nary 
codes (which are not transversal anymore, and are more compact). Set packings, such as the designs 
presented in [2], can yield very efficient designs, but are mainly limited to t ≤ 2 [1]. Transversal designs 
include the well-known grid (or row-and-column) design. This design is initially limited to identifying a 
single positive in the absence of noise, and is not very efficient, but it has been improved in two directions: 
hypercube designs [4] generalize it by considering higher dimension grids, and various methods [e.g. 7] have 
been proposed to build several "synergical" grids that work well together. Finally, some authors have 
proposed direct constructions of error-correcting pooling designs [13, 17]. 

 Note that STD, although directly constructed, is in fact a transversal design. Furthermore, STD can be 
seen as a constructive definition of a q-nary code as proposed by [12], i.e. a concatenated code where the 
inner code is simply the unary code, and the outer code has some similarities with a Reed-Solomon code 
[19]. Yet although related, the methods are clearly different: for example, STD doesn’t produce useful pools 
if q is a prime power; on the other hand, STD allows to build up to q+1 layers, whereas the Reed-Solomon 
based construction can only build up to q-1. Furthermore, STD produces efficient pools independently of the 
number of variables n, contrary to the Reed-Solomon approach where one is faced with the difficult problem 



 

of choosing a good subset of code words except for some n values. The relationship between the two 
approaches requires further investigations. 

 Set packing designs. Regarding set packing designs, the main results taking into account error-correction 
are presented in [2]. The authors define designs that can correct any number of errors and identify up to t=2 
positives, and prove that these designs are optimal when the construction is possible (it is not always possible 
if t=2). A real-world application is described in [3], where suboptimal variants of the previous designs are 
proposed for screening a clone map with n=1530 and t=2. The authors start off with an optimal design for t=2 
and E=0, which can deal with 4368 variables, and select 1530 of these to serve as clones in their design. This 
was presumably done because the optimal designs cannot be built for arbitrary values of n: n must be the size 
of a certain Steiner system. Although the resulting designs are no longer optimal, they can retain high 
performance and obviously still satisfy the guarantee requirement. Additionally, this strategy reduces the 
sizes of pools, providing increased robustness (e.g., some information can still be obtained if, exceptionally, 
three objects are positive), and complying with the application-imposed pool size constraints. In the example, 
n=1530 and t=2, and the authors propose two designs: one with 65 pools of 118 clones each, and one with 54 
pools of 142 clones. These numbers are very close to what would be recommended with STD: we could 
propose STD(1530; 13; 5) which has 65 pools of 118 clones, or STD(1530; 7; 7) with 49 pools of 218 clones. 
All of these designs guarantee the identification of 2 positives in the absence of noise. Furthermore, although 
noise-tolerance is not guaranteed in any of them, simulations we have performed suggest that substantial 
error-rates can be corrected in the STD designs, as is the case in the others. Therefore these designs and STD 
appear to achieve very similar performances, but STD is more flexible since it can be used for any number of 
positives, instead of being limited to t ≤ 2. 

 Transversal designs. An interesting generalization of the grid design is described in [4]. The authors 
propose to array the variables in a D-dimensional cube, instead of the 2 dimensions used in the standard grid 
design. Furthermore, they advise that the length of the cube's side be chosen prime: let us denote it q. A pool 
is then obtained from each hyperplane, so that the D-dimensional cube yields D layers of q pools, each 
comprising up to n/q variables. To obtain more layers, the authors propose a criterion to construct "efficient 
transforming matrices" that produce additional cubes, where variables are as shuffled as possible; in fact, the 
purpose of their "efficiency" criterion is identical to the "co-occurrence of variables" property satisfied by 
STD (theorem 1, see 3.1). Seen like this, their system is clearly related to STD: D is Γ+1, and although the 
authors do not investigate their design's behavior under the guarantee requirement, corollaries 1 and 2 from 
sections 3.2 and 3.3 can in essence be applied. Furthermore, when the cube is "full", i.e. when n=qD, their 
pools satisfy an analog of theorem 2 (i.e. they are "information-efficient" in some sense, see 3.4). Note that 
this cannot be the case when q is arbitrary; this may explain why the authors limit their options for q to the 
smallest primes larger than n1/D, for each D value. However, each D-dimensional cube provides only D 
layers, and the proposed criterion for building additional cubes is not systematic, so that the total number of 
layers that can be built is unclear but seems much smaller than with STD. In addition, the authors don't take 
observational noise into account (they do talk of "false positives", but are really referring to what we call 
ambiguous variables). For these reasons, we cannot rigorously compare the designs under the guarantee 
requirement, but in general the fact that STD can build more layers is clearly favorable, since it allows 
dealing with a greater number of positives and/or errors at any chosen q value. In a numerical example 
concerning the screening of the CEPH YAC library, n=72000 and the authors argue that the optimal 
dimension and side length to use are D=3 and q=43, respectively. They then exhibit a set of transforming 
matrices that allows the construction of at most 3 additional cubes, yielding a total of 12 layers. By contrast, 
using the same values for D and q, STD can build up to 44 layers, which all satisfy the efficiency criterion. 
We believe that some of these extra layers could prove valuable, especially when allowing for experimental 
noise. In addition, smaller values for q can be used with STD (while still being information-efficient in the 
sense of theorem 2), although simulations would be necessary to choose the best value. 

 Two other transversal pooling designs, which generalize the grid design by providing additional 2-
dimensional grids, are described in [7]. In essence, they are very similar to STD when Γ=1: writing q=√n, 
they allow the construction of up to q+1 layers of pools (where each layer contains q pools of size q) which 
satisfy the property that any pair of variables appears in at most one pool. Theorem 1 of section 3.1 shows 
that this property, known as the "unique colinearity" condition, is in fact verified by STD when Γ=1 (in 
accord with q=√n). We can observe that these designs, as well as STD when Γ=1, are maximal under this 
condition, since each pair of variables is in fact present in exactly one pool. Corollaries 1 and 2 of sections 
3.2 and 3.3 can be applied, and show that they allow the identification of up to t positives while correcting E 
observation errors, provided that t+2⋅E+1 ≤ q+1. The performance of the designs from [7] is therefore 
identical to that of STD when Γ=1. However, STD is superior to these designs in two respects. First, their 



 

 

constructions are only possible if q is prime and q≡5 mod 6 (using the so-called RCF construction), or if q is 
prime and q≡3 mod 4 (using the "Union Jack Design"). By contrast, STD only requires that q is prime. 
Second, STD can be used with any compression power, rather than being limited to Γ=1. This flexibility is an 
advantage, because STD can be customized to suit more applications. Notably, when the fraction of positives 
is small, the Union Jack and RCF designs perform less well: the pools are too small, and observing that a 
pool is negative brings little information. By contrast, pools in STD can be very large (when choosing a small 
q), so that every observation is informative. To illustrate this point, let us consider the numerical example of 
[17] discussed below, where the fraction of positives is particularly low (n=18,918,900 and t is 2 or 9). The 
best usable design from [7] would be a Union Jack with q=4363, and would require a total of 13,089 pools 
for 2 positives - 77 times more than STD - and 43,630 pools to guarantee the identification of 9 positives - 32 
times more than STD. 

 Direct constructions. In [13], the author proposes a direct construction allowing the detection of an 
arbitrary number of positives. Although this design is not very efficient under the guarantee requirement, the 
author shows in [14] that the pools designed for detecting 2 positives allow with high probability the 
detection of more positives. A numerical example, presented in [16], is the following. If n=106 and t=5, using 
946 pools guarantees the identification of 2 positives and successfully identifies up to 5 positives with 
probability 97.1%. In comparison, under the guarantee requirement (i.e. with probability 100%), 
STD(n; 11; 11) contains 121 pools and identifies 2 positives, and STD(n; 23; 21), which comprises 483 
pools, guarantees the identification of up to 5 positives. 

 Finally, another group [17] described two new classes of non-adaptive pooling designs, which allow the 
detection of any number of positives and the correction of half as many errors. Following the idea from [14], 
they also show that their designs for t=2 have high probabilities of being successful for more positives. In a 
numerical example, they consider the case n=18,918,900, and propose a design with 5460 pools which 
guarantees the identification of 2 positives, and can in addition identify up to 9 positives with 98.5% chance 
of success. By contrast, STD(n; 13; 13) contains 169 pools and guarantees the identification of 2 positives, 
and the identification of 9 positives is guaranteed with the 1369 pools of STD(n; 37; 37). 

5. Conclusion 

In this paper, we have presented a new pooling design: the "shuffled transversal design" (STD). We have 
proven that it constitutes an error-correcting solution to the pooling problem. This design is highly flexible: it 
can be tailored to deal efficiently with many experimental settings (i.e., numbers of variables, positives and 
errors). Finally, under a standard performance criterion, i.e. requiring that the correction of all errors and the 
identification of all variables' values be guaranteed mathematically, we have shown that STD compares 
favorably, in terms of numbers of pools, to the main previously described deterministic pooling designs.  

 This approach is being experimentally validated in collaboration with Marc Vidal's laboratory at the Dana 
Farber Cancer Institute, Boston. In a pilot project, pools have been generated with 940 AD-Y preys, using the 
STD(940;13;13) design, and we are screening the 169 resulting pools against 50 different baits. This 
experiment will provide estimations for the technical noise levels of their high-throughput 2-hybrid protocol, 
in addition to producing valuable interaction data and yielding a real-world evaluation of the STD approach. 

 Although this work is motivated by protein interaction mapping, as we have been collaborating with Marc 
Vidal's group for several years, its scope is certainly not limited to high-throughput two-hybrid projects. 
Potential applications include a wide range of high-throughput PCR-based assays such as gene knockout 
projects [e.g. 20], drug screening projects [e.g. 11], and various proteomics studies [e.g. 15]. Furthermore, 
this general problem certainly has applications outside biology. 

 In practice, an important point is made in [14], where the author shows that his pooling design can be 
used to detect with high probability more positives than guaranteed. Simulations we have performed show 
that this observation is also true with STD: the gains can be increased substantially if one tolerates a small 
fraction of ambiguous variables that will need to be retested. However, these considerations are outside the 
scope of this paper, because they cannot be studied rigorously, by analytical means, but require simulations. 
Yet using such a strategy in practice with STD significantly improves the performance. For example, 
consider the case n=10000 and t=5, and suppose that the assay has an error-rate of 1%. To guarantee the 
identification of all variables' values, one must use 483 pools (with q=23 and k=21). However, if one 
tolerates up to 10 ambiguous variables, even when overestimating the error-rate to 2% for safety's sake, 143 
pools prove amply sufficient. It is clear that this "ambiguity-tolerant" approach should be preferred in 



 

practical applications. This approach and the corresponding computer program, which performs simulations 
to select the STD parameter values best suited for a given application and includes original efficient 
algorithms for preparing the pools and decoding the outcomes, will be discussed in another paper. 

 Another interesting track will be to study the efficiency of pooling designs from the point of view of 
Shannon's Information Theory. We are planning to investigate STD's behavior in this context. In particular, 
theorem 2 from section 3.4 could prove useful for this. 

 Finally, the connection between STD and constructions based on superimposed codes, e.g. q-nary Reed-
Solomon codes [12], warrants further studies. 
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