# Smart-pooling for interactome mapping

Nicolas Thierry-Mieg
CNRS / TIMC-IMAG / TIMB, Grenoble

collaboration with Marc Vidal, CCSB / DFCI, Boston



#### CCSB-HI1

Assay: yest two-hybrid (Y2H)

Space: 8100x8100

2800 interactions

125 retested by co-AP: ~80% success

-> few (technical) false positives, but many false negatives

#### Protocol:

- one bait against mini-pools of 188 preys, 96-well format
- identification by sequencing
- pairwise retests

#### Smart-pooling

Y2H and many other HT experiments:

- basic yes-or-no test to a large collection of "objects"
- low-frequency positives
- experimental noise

Smart-pooling: increase efficiency, accuracy and coverage, provided that

- objects individually available (eg ORFeome)
- basic assay works on pools (logical OR)
- Cherry-picking robot...

#### **Method:**

- small number of redundant pools
- direct identification (eg no sequencing in Y2H)
- deal with false positives & negatives

#### Example: rows-and-columns design



16 probes (A1-D4) one pool per row (A-D) & column (1-4) If C and 2 positive, then C2 is the only positive probe.

#### Example: rows-and-columns design



16 probes (A1-D4) one pool per row (A-D) & column (1-4) If **C** and **2** positive, then C2 is the only positive probe.

But if **B** and 3 also positive, the two solutions (B2 and C3) or (B3 and C2) cannot be distinguished.

Resolved by adding 4 'diagonal' pools. Still, not a great design!

(from: Thierry-Mieg N. Pooling in systems biology becomes smart.

Nat Methods. 2006 Mar;3(3):161-2.)

#### The pooling problem

- ◆ Pooling problem (Combinatorial Group Testing problem) (n,t,E):
  - $\mathcal{A}_{n}$  a set of Boolean variables (n $\approx$ 100-10<sup>4</sup>)
  - ◆ t = max number of positives (≈1-10)
  - $ightharpoonup E = \max \text{ number of errors } (≈1-40\% \text{ of tests})$

Pool: subset of  $\mathcal{A}_n$ , value=OR

Goal: build a set of v pools

- v as small as possible
- guarantee correction of errors & identification of positives

#### Matrix representation

 $v \times n$  Boolean matrix: M(i,j) true  $\Leftrightarrow$  pool i contains variable j

Example: n=9,  $\mathcal{A}_9 = \{0, 1, ..., 8\}$ :

"layer" = partition of  $\mathcal{A}_n$ 

# Shifted Transversal Design: idea

- "Transversal" construction: layers
- "Shift" variables from layer to layer
- Limit co-occurrence of variables
- Constant-sized intersections between pools

# Shifted Transversal Design: idea

- "Transversal" construction: layers
- "Shift" variables from layer to layer
- Limit co-occurrence of variables
- Constant-sized intersections between pools

STD(n;q;k): **n** variables, **q** prime, q < n, **k** number of layers ( $k \le q+1$ )

- First q layers: symmetric construction, q pools of size n/q or 1+n/q
- ► If k=q+1 : additional singular layer, up to q pools of heterogeneous sizes

# Shifted Transversal Design: idea

- "Transversal" construction: layers
- "Shift" variables from layer to layer
- Limit co-occurrence of variables
- Constant-sized intersections between pools

STD(n;q;k): **n** variables, **q** prime, q < n, **k** number of layers ( $k \le q+1$ )

- First q layers: symmetric construction, q pools of size n/q or 1+n/q
- ► If k=q+1 : additional singular layer, up to q pools of heterogeneous sizes

Let:  $\sigma_{q} \text{ circular permutation on } \{0,1\}^{q}: \sigma_{q} \begin{vmatrix} x_{1} \\ x_{2} \\ \vdots \\ x \end{vmatrix} = \begin{vmatrix} x_{q} \\ x_{1} \\ \vdots \\ x \end{vmatrix}$   $\Gamma(q,n) = \min\{\gamma \mid q^{\gamma+1} \ge n\}$ 

$$\Gamma(q,n) = \min\{\gamma \mid q^{\gamma+1} \ge n\}$$

$$\sigma_{q} \begin{vmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{q} \end{vmatrix} = \begin{vmatrix} x_{q} \\ x_{1} \\ \vdots \\ x_{q-1} \end{vmatrix}$$

#### STD construction

```
\forall j \in \{0,...,q\}: M_j \text{ qxn Boolean matrix, representing layer L}(j)
   columns C_{j,0}, ..., C_{j,n-1}:
C_{0,0} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \text{ and } \forall i \in \{0, ..., n\} \quad C_{j,i} = \sigma_q^{s(i,j)}(C_{0,0}) \text{ where:}
\bullet \text{ if } j < q : \quad s(i,j) = \sum_{c=0}^{\Gamma} j^c \left[ \frac{i}{q^c} \right]
\bullet \text{ If } j = q \text{ (singular layer)} : \quad s(i,q) = \left[ \frac{i}{q^{\Gamma}} \right]
```

• If 
$$j = q$$
 (singular layer):  $s(i, q) = \left| \frac{i}{q^r} \right|$ 

For  $k \in \{1,...,q+1\}$ ,  $STD(n;q;k) = L(0) \cup ... \cup L(k-1)$ 

#### STD example: n=9, q=3

$$M_{0} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$M_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_{3} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$L(0) = \{\{0,3,6\},\{1,4,7\},\{2,5,8\}\}\$$

$$L(1) = \{ \{0,5,7\}, \{1,3,8\}, \{2,4,6\} \}$$

$$L(2) = \{\{0,4,8\},\{1,5,6\},\{2,3,7\}\}\$$

$$L(3) = \{\{0,1,2\},\{3,4,5\},\{6,7,8\}\}\$$

$$STD(n=9;q=3;k=2) = L(0) \cup L(1)$$

#### STD example: n=9 to 27, q=3

n=9, q=3, third layer (j=2): 
$$M_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$n=27, q=3, j=2: s(i,j) = \sum_{c=0}^{\Gamma} j^{c} \left[ \frac{i}{q^{c}} \right] = i+2 \left[ \frac{i}{3} \right] + 4 \left[ \frac{i}{9} \right] + (1+j+j^{2}) + (1+j) + ($$

#### STD Properties

- Theorem: number of pools that contain any 2 variables is at most  $\Gamma(q,n)$
- Proof: layers j = roots of non-zero polynomial on GF(q) of degree at most  $\Gamma$
- Example: n=9, q=3

```
L(0) = \{\{0,3,6\}, \{1,4,7\}, \{2,5,8\}\}\}

L(1) = \{\{0,5,7\}, \{1,3,8\}, \{2,4,6\}\}\}

L(2) = \{\{0,4,8\}, \{1,5,6\}, \{2,3,7\}\}\}

L(3) = \{\{0,1,2\}, \{3,4,5\}, \{6,7,8\}\}
```

**0** appears exactly once ( $\Gamma$ =1) with each other variable.

#### A solution to the pooling problem

- Corollary: If there are at most t positive variables in  $\mathcal{A}_n$  and at most E false positive and E false negative observations: STD(n;q;k) is a solution, when choosing q prime such that  $t \cdot \Gamma(q,n) + 2 \cdot E \le q$ , and  $k = t \cdot \Gamma + 2 \cdot E + 1$
- Constructive proof: exhibit a simple algorithm that works Algorithm relies on knowledge of E

#### A solution to the pooling problem

- Corollary: If there are at most t positive variables in  $\mathcal{A}_n$  and at most E false positive and E false negative observations: STD(n;q;k) is a solution, when choosing q prime such that  $t \cdot \Gamma(q,n) + 2 \cdot E \le q$ , and  $k = t \cdot \Gamma + 2 \cdot E + 1$
- Constructive proof: exhibit a simple algorithm that works Algorithm relies on knowledge of E

- STD is sound
- Allows to compare with other published designs: favorable (on numerical examples)

#### Even redistribution of variables

**Theorem:** Let  $m \le k \le q$  and consider  $\{P_1, ..., P_m\} \subset STD(n;q;k)$ , each belonging to a different layer. Then:

$$\lambda_m \leq \left| \bigcap_{h=1}^m P_h \right| \leq \lambda_m + 1$$
, where  $\lambda_m = \sum_{c=m}^{\Gamma} \left[ \left[ \frac{n-1}{q^c} \right] \% q \right] q^{c-m}$ 

#### **Notes:**

- $\lambda_{\rm m}$  depends only on m, not on the choice of the pools  $P_1, \dots, P_{\rm m}$
- → every pool, and every intersection between 2 or more pools, is redistributed evenly in each remaining layer
- L(q) does not work  $(k \le q)$

#### Using STD

- In practice: tolerate a few ambiguous variables → many fewer pools
   Example: n=10000, t=5, error-rate 1%
  - guarantee requires 483 pools
  - when tolerating up to 10 ambiguous variables, 143 pools prove sufficient
- Given (n,t,E-rates) and "ambiguity tolerance", find optimal parameter values by simulation
- Difficulty: "decode" observed pool values

# Interpreting smart-pooling results

Decoding an observation: a combinatorial optimization problem

Difficult for general solvers (eg integer linear programming)

- Interpool: an algorithm to solve it
  - Branch-and-bound
  - Exact
  - Fast (usually)
  - GNU GPL

Manuscript under review

#### Validation

• Pilot project: 100 baits x 940 preys

Varied subspace of CCSB-HI1: many interactions, hubs, auto-activators...

Choosing the design: simulations with interpool

#### STD(940;13;13), 10% FPR

| Positives | FNR | TPs missed | Retests | Simulations | Time   |
|-----------|-----|------------|---------|-------------|--------|
| 2         | 10% | 0          | 2.26    | 10000       | 1m     |
|           | 20% | O          | 2.26    |             | 1m     |
|           | 30% | 1.2%       | 2.27    |             | 4m     |
| 3         | 10% | О          | 3.57    |             | 4m     |
|           | 20% | 0.4%       | 3.58    | 10000       | 33m    |
|           | 30% | 3.4%       | 3.60    |             | 2h     |
| 4         | 10% | О          | 5.06    | 10000       | 32m    |
|           | 20% | 1.0%       | 5.11    | 10000       | 10h39m |
|           | 30% | 6.2%       | 5.26    | 7500        | 2d11h  |
| 5         | 10% | 0.1%       | 6.71    | 10000       | 4h     |
|           | 20% | 1.7%       | 6.94    | 1000        | 12h47m |
|           | 30% | 12.9%      | 7.88    | 300         | 3d10h  |

TPs missed and Retests: upper bounds of the 95% confidence intervals

#### Validation

Pilot project: 100 baits x 940 preys

Varied subspace of CCSB-HI1: many interactions, hubs, auto-activators...

- Smart-pooled the 940 preys according to STD(940;13;13)
  - ▶ 169 pools, 73 preys in each pool
  - each prey is in 13 pools
  - at most 2 pools contain any pair
    - $\rightarrow$  3 pools for identification, 10 pools for errors and multiple positives
- Screened each bait against the 169 pools, scored positive pools
- Decoded the patterns of positive pools (interpool) -> putative positives
- Pairwise retests

#### Example with one bait





Circles: spots scored positive.

Decoding finds:

- 2 interactors: green (no FNs), and blue (3 FNs = red arrows)
- 2 FPs (red circles)

#### Results

- Identified 65 putative interactions
- Retest: 60 passed, 3 failed, 2 unconfirmed (auto-activation in the retest)
  - $\rightarrow$  Specificity between 92% and 95%

#### Results

- Identified 65 putative interactions
- Retest: 60 passed, 3 failed, 2 unconfirmed (auto-activation in the retest)
  - $\rightarrow$  Specificity between 92% and 95%
- 60 confirmed = 36 CCSB-HI1 + 24 novel
- **Recall of CCSB-HI1 data**: the 36 represent 73% of CCSB-HI1, or 84% when excluding the two hardest baits (strong hub, auto-activator)
- Sensitivity vs CCSB-HI1: Difficult because subspace strongly biased

Low estimate: 172% higher sensitivity

High estimate: 325% higher sensitivity

#### Summary

- **STD** (the Shifted Transversal Design) is a **flexible and efficient family of pooling designs**. On paper and in silico, STD performs very well.
- Interpool is a fast exact decoding algorithm. Useful both for choosing a design (simulations) and for interpreting experimental results. Open source.
- Smart-pooling really works for HT-Y2H: it is efficient, sensitive and specific.

**Current work:** scaling up to the complete *C. elegans* ORFeome, using denser formats (384 and 1536)

Takes advantage of STD symmetries: build micro-pools, then combine at will





#### Acknowledgments

M. Vidal, D. Hill, J.-F. Rual: CCSB, Dana-Farber Cancer Institute, Boston

C. Boone, X. Xin: Boone Lab, University of Toronto

J.-L. Roch, L. Trilling, G. Bailly: TIMC-IMAG and LIG, Grenoble

Funding: INPG, Grenoble (2003-2004)

Thierry-Mieg N. A new pooling strategy for high-throughput screening: the Shifted Transversal Design. BMC Bioinformatics 2006, 7:28.

Thierry-Mieg N. Pooling in systems biology becomes smart. Nat Methods. 2006; 3(3):161-2.