Smart-pooling for

interactome mapping

Nicolas Thierry-Mieg
CNRS / TIMC-IMAG / TIMB, Grenoble

collaboration with Marc Vidal, CCSB / DFCI, Boston

TSB Workshop, Grenoble 10/10/2007

% :;‘l"'-l
Lo

CCSB-HIT

Assay: yest two-hybrid (Y2H)

Space: 8100x8100

2800 interactions

125 retested by co-AP: ~80% success

-> few (technical) false positives, but many false negatives

Protocol:

* one bait against mini-pools of 188 preys, 96-well format
* identification by sequencing

* pairwise retests

Smart-pooling

Y2H and many other HT experiments:
* basic yes-or-no test to a large collection of “objects”
* low-frequency positives
¥ experimental noise
Smart-pooling: increase efficiency, accuracy and coverage, provided that
* objects individually available (eg ORFeome)
* basic assay works on pools (logical OR)
* Cherry-picking robot...
Method:
* small number of redundant pools
* direct identification (eg no sequencing in Y2H)

* deal with false positives & negatives

Example: rows-and-columns design

16 probes (A1-D4)
one pool per row (A-D) & column (1-4)
If C and 2 positive, then C2 is the only

positive probe.

“—00P®O~
CO—0 0900
CO—0 000 -

VY VY
9060

Example: rows-and-columns design

16 probes (A1-D4)

one pool per row (A-D) & column (1-4)
If C and 2 positive, then C2 is the only
positive probe.

But if B and 3 also positive, the two
solutions (B2 and C3) or (B3 and C2)
cannot be distinguished.

Resolved by adding 4 'diagonal’ pools.
Still, not a great design!

(from: Thierry-Mieg N. Pooling in

systems biology becomes smart.
Nat Methods. 2006 Mar;3(3):161-2.)

The pooling problem

* Pooling problem (Combinatorial Group Testing problem) (n,t,E):
> }Zln a set of Boolean variables (n=100—104)

* t = max number of positives (=1-10)

* E = max number of errors (=1-40% of tests)
Pool: subset of /’Zln , value=OR

Goal: build a set of v pools
» v as small as possible

® cuarantee correction of errors & identification of positives

Matrix representation

vxn Boolean matrix: M(i,J) true < pool 1 contains variable j

Example: n=9,)219 = {0, 1,..., 8} :

pools
0 {0,3,6}
0 {1,4,7}
. {2,5,8)

“layer” = partition of A

Shifted Transversal Design: idea

“Transversal” construction: layers

“Shift” variables from layer to layer

» Limit co-occurrence of variables

» Constant-sized intersections between pools

Shifted Transversal Design: idea

“Transversal” construction: layers

“Shift” variables from layer to layer

» Limit co-occurrence of variables

» Constant-sized intersections between pools

STD(n;q;k) : n variables, q prime, q < n, K number of layers (k < q+1)
» First q layers: symmetric construction, q pools of size n/q or 1+n/q
P If k=g+1 : additional singular layer, up to q pools of heterogeneous sizes

Shifted Transversal Design: idea

“Transversal” construction: layers

“Shift” variables from layer to layer

» Limit co-occurrence of variables

» Constant-sized intersections between pools

STD(n;q;k) : n variables, q prime, q < n, K number of layers (k < q+1)
» First q layers: symmetric construction, q pools of size n/q or 1+n/q
P If k=g+1 : additional singular layer, up to q pools of heterogeneous sizes

Let: X Ay,
P G4 circular permutation on {0, 1 14 o, Yal=| N
» () =min{ylq""' > n}

STD construction

V) €{0,...q}: M; gqxn Boolean matrix, representing layer L(j)

columns C. ,...,C.
j,0

o j,n—1
1
10 . — s(i, j) .
Coo=|"|. and Yielo,...,n| C..=o0 ""(C,,) where:
0

I
sifj<q: s(i,j)= j°

* If j = q (singular layer) : s(i,q)= LF

q

Forke{l,...q+1}, STD(n;q;k)=L(0) U ... U L(k-1)

STD example: n=9, g=3

L) =1{{0,3,6},{1,4,7},{2,5,8} }
L(1)={{0,5,7},{1,3,8},{2,4,6}}
L(2)=1{{0,4,8},{1,5,6},{2,3,7}}
L3)=1{{0,1,2},{3,4,5},{6,7,8}}

ool ol o Boc o ool
oclllc Boco ool c o
Bococ ool oo oo
colfl o< ol oo
clloc ccB Boco oo
Blocc o oo o -
coll ccl ool B-oc -
ol oo oo Bloc o
Hloco oo Floo Bo o
I Il

Il Il
e} — N on

S = = S

STD(n=9;q=3;k=2) = L(0) U L(1)

STD example: n=9 to 27, g=3

=2):

3, third layer (j

9, q=

n=

r

n=27, q=3, j=2: s(i, j)

STD Properties

® Theorem: number of pools that contain any 2 variables is at most I'(q,n)

@ Proof: layers j = roots of non-zero polynomial on GF(q) of degree at most '

@ Example: n=9, q=3

L(0) = {10,3,6}, {1,4,7}, {2,5,8}}
L(1) = {{0,5,7}, {1,3,8}, {2,4,6} }
L(2) = {10,4,8}, 11,5,6}, {2,3,7}}
L(3) = {{0,1,2}, {3,4,5}, {6,7,8} }

0 appears exactly once (I'=1) with each other variable.

A solution to the pooling problem

@ Corollary: If there are at most t positive variables in }Zln and at most E

false positive and E false negative observations: STD(n;q;k) is a solution,

when choosing q prime such that tlT(q,n)+2[E <q, and k = tlT+2HE+1

® Constructive proof: exhibit a simple algorithm that works
Algorithm relies on knowledge of E

A solution to the pooling problem

@ Corollary: If there are at most t positive variables in }Zln and at most E

false positive and E false negative observations: STD(n;q;k) is a solution,

when choosing q prime such that tlT(q,n)+2[E <q, and k = tlT+2HE+1
® Constructive proof: exhibit a simple algorithm that works

Algorithm relies on knowledge of E
» STD is sound

P Allows to compare with other published designs: favorable (on numerical
examples)

Even redistribution of variables

Theorem: Let m <k < q and consider {P,,...,P_} < STD(n;q;k), each
belonging to a different layer. Then:

n—1

% q qc—m

< A +1, where ?\mzz

c=m

A < |(\P,
h=1

qC

Notes:

@ A, depends only on m, not on the choice of the pools P,,....P

— every pool, and every intersection between 2 or more pools, is
redistributed evenly 1in each remaining layer
® L.(q) does not work (k < q)

Using STD

® In practice: tolerate a few ambiguous variables — many fewer pools
Example: n=10000, t=5, error-rate 1%
» suarantee requires 483 pools

» when tolerating up to 10 ambiguous variables, 143 pools prove sufficient

® Given (n,t,E-rates) and “ambiguity tolerance”, find optimal parameter
values by simulation

® Difficulty: “decode” observed pool values

Interpreting smart-pooling results

Decoding an observation: a combinatorial optimization problem
Difficult for general solvers (eg integer linear programming)

® Interpool: an algorithm to solve it
® Branch-and-bound
® Exact
® Fast (usually)
* GNU GPL

Manuscript under review

Validation

@ Pilot project: 100 baits x 940 preys

Varied subspace of CCSB-HII: many interactions, hubs, auto-activators...

Choosing the design: simulations with interpool

S1D(940;13;13), 10% FPR

Positives FNR TPs missed Retests Simulations Time

10% 0 2.26 1m

2 20% 0 2.26 10000 1m
30% 1.2% 2.27 4m
10% 0 3.57 4m

3 20% 0.4% 3.58 10000 33m
30% 3.4% 3.60 2h
10% 0 5.06 10000 32m

4 20% 1.0% 5.11 10000 10h39m
30% 6.2% 5.26 7500 2d11h
10% 0.1% 6.71 10000 4h

5 20% 1.7% 6.94 1000 12h47m
30% 12.9% 7.88 300 3d10h

TPs missed and Retests: upper bounds of the 95% confidence intervals

Validation

@ Pilot project: 100 baits x 940 preys

Varied subspace of CCSB-HII: many interactions, hubs, auto-activators...

® Smart-pooled the 940 preys according to STD(940;13;13)
» 169 pools, 73 preys in each pool
P cach prey is in 13 pools
P at most 2 pools contain any pair

— 3 pools for identification, 10 pools for errors and multiple positives

® Screened each bait against the 169 pools, scored positive pools
® Decoded the patterns of positive pools (interpool) -> putative positives

@ Pairwise retests

Example with one bait

Circles: spots scored positive.

Decoding finds:
- 2 interactors: green (no FNs), and blue (3 FNs = red arrows)
- 2 FPs (red circles)

Results

® Identified 65 putative interactions

@ Retest: 60 passed, 3 failed, 2 unconfirmed (auto-activation in the retest)
— Specificity between 92 % and 95 %

Results

® Identified 65 putative interactions

@ Retest: 60 passed, 3 failed, 2 unconfirmed (auto-activation in the retest)
— Specificity between 92 % and 95 %

® 60 confirmed = 36 CCSB-HII1 + 24 novel

P Recall of CCSB-HI1 data: the 36 represent 73% of CCSB-HI1, or 84%
when excluding the two hardest baits (strong hub, auto-activator)

» Sensitivity vs CCSB-HI1: Difficult because subspace strongly biased

Low estimate: 172 % higher sensitivity

High estimate: 325 % higher sensitivity

Summary

» STD (the Shifted Transversal Design) is a flexible and efficient family of
pooling designs. On paper and in silico, STD performs very well.

» Interpool is a fast exact decoding algorithm. Useful both for choosing a

design (stmulations) and for interpreting experimental results. Open source.

P Smart-pooling really works for HT-Y2H: it is efficient, sensitive and

specific.

Current work: scaling up to the complete C. elegans ORFeome, using
denser formats (384 and 1536)

Takes advantage of STD symmetries: build micro-pools, then combine at will

- - - - L] - L]
- e L] L - -

Acknowledgments

M. Vidal, D. Hill, J.-F. Rual : CCSB, Dana-Farber Cancer Institute, Boston
C. Boone, X. Xin : Boone Lab, University of Toronto

J.-L. Roch, L. Trilling, G. Bailly: TIMC-IMAG and LIG, Grenoble

Funding: INPG, Grenoble (2003-2004)

Thierry-Mieg N. A new pooling strategy for high-throughput screening: the
Shifted Transversal Design. BMC Bioinformatics 2006, 7:28.

Thierry-Mieg N. Pooling in systems biology becomes smart. Nat Methods.
2006; 3(3):161-2.

