Manual of HaploPOP

Nicolas Duforet-Frebourg
Université Joseph Fourier,
Centre National de la Recherche Scientifique,
Laboratoire TIMC-IMAG, Grenoble, France.

February 18, 2015

Contents

1

2

Introduction

Algorithms

21 Alm ...
22 LEARN
2.3 APPLY

Starters

3.1 windowsOS
3.2 UNIXOS
3.3 MACOS

Command line
41 LEARN
4.2 APPLY

Files

5.1 inputfiles
5.2 Outputfiles
5.3 A toy example for input and output files.

Examples
6.1 Learn Haplotypes on two populations with
6.2 Apply the Haplotypes on the 2-island data

Physical distances

1 Introduction

HaploPOP is a software that builds informative haplotypes to characterize
population genetic structure based on the Gain of Informativeness for As-
signment (GIA) statistic, introduced by Gattepaille and Jakobsson [?]. The
method implemented by the software is described in [?].

2 Algorithms

2.1 Aim

We mentionned in the article our will to transform a set of markers in a
set of haplotypes being much more informative. The algorithm will be op-
timization algorithm for the following problem: Consider a set of L Mark-
ers {S1,59...5,}. Denote that what we would call markers in this manual
would refer to any genetic segregating site, such as Single Nucleotide Poly-
morphisms, Haplotypes, or Microsatellites. Our problem can be formally
written as:

argMaxp Z TA(H)
Her
I' € Part(S:...51)

For the commodity we show that this score can be express as a function of
the Gain of Informativness for Assignment only:

argMazxr Z(Z GIA(Hy. 5-1,5))
Hel ScH
I' € Part(S:...5L)

We can observe that this problem has no optimal structure. If you find the
best combination into a certain number of haplotype, the best solution at
next step, with a new haplotype, can not be predictied using the previous
best solution. Because of its topology, a lot of method useful in combinatorial
problems are not applicable, especially the dynamic programming. We have
then to find other solution to compute efficient combinations.

2.2 LEARN

To compute naive combinations when you don’t have access to the optimal
solution, the greedy algorithm worths to be tried. Though we know that this
algorithm, according to certain problem can be performing arbitrarily good
or inefficient. In our case, this is doing constantly, and not so surprisingly,
good. We introduce here the object we would call the matrix of GIAs, which
is initially a L x L matrix, which is reduced by one dimension at each step:

0 GIA(1,2) GIA(1,3)
GIA(2,1) 0 GIA(2,3)

The greedy algorithm gives good results, however, It produces haplotypes
that can group markers very far away from each over. To save some overfit,

we force the combination to be more local. In addition, Greedy is a quite
expensive algorithm in terms of number of operation. We give an estimation
of the cost of such an algorithm as a function of the size of the data. Let’s
say we are working with V; chromosomes from haploid individuals. If we
consider a number L of markers

L2
Crn, ~O(ax L3 +bx L x N;+c¢x > x Nj;), where a,b,c € Ry

From this Cost, we note that we can save a lot of time, by dividing
the Set of Markers into Subsets of smaller sizes. That is what the Subsets
method does. We target smaller Set of markers, and apply them the greedy
algorithm.

{ S Su s SuttySaus oo Sy gy 91}
Ny Haplotypes NoHaplotypes

N

H
F(%) aplotypes

The algorithm can be written like this:

divide the Set in Subsets
for each Subset dof{
Calculate GIA for every potential combination in GIAMatrix
while max(GIAMatrix > 0){
Combine argmax(GIAMatrix) in Data
Update the Data and the GIAMatrix with the new combination

by
Write the haplotypes of every Subset in the OUTPUTFile

As a result, the computation time will be highly reduced, but also the
haplotype will be built with a lower ”choice” of combination. Then we
expect the haplotype marker set resulting to be of a lower quality than the
one produced by the greedy. The point of this method is to offer the choice
to the user to have a trade off between time and efficiency. We will mention
more about this in the note about the performances.

To select the trade off between time and combinations the size of the
Subsets can be chosen by two ways:

Fixed Number of marker One can specify a particular number of
marker to include in each window. This is the case that has described given
above.

Physical distance One can also specify the size as a particular physi-
cal distance between markers. It can be a little bit more relevant to consider
windows of a chosen constant physical size, rather than a constant number
a markers that can be spread on very large distances. By using physical or
genetic distances, one take advantage of linkage disequilibrium induced by
recombination rate.

2.3 APPLY

HaploPOP is a software made to build haplotypes starting with an initial
set of markers. It can be used for its statistical inference of haplotypes, but
it is also possible to specify the particular haplotypes one might want to
build. This method would write into the OUTPUTFile the Combinations of
the INPUTFile according to the HAPLOFile pattern that must be specified
here.

This method is particularly useful for study such as case-control study,
when sets of individuals are available to learn haplotypes, to then assign indi-
viduals to groups. It is also a good feature for split, or Cross validation, when
investigating population structure, such as mentionned in [?]duforetetal).
One just have to use the .haploID produced by the previous method, and
the APPLY method on your validation set.

3 Starters

3.1 windows OS

If you are using windows, you can use the software in two ways. The first
one is the command line software. You will have to open a terminal first
(run, then type cmd). Then go in the repertory containing the executable
file HaploPOP. exe, and just type HaploPOP.exe with the parameters of your
choice.

If you rather use a more guided execution, you can just run the other
executable file HaploPOPUI. exe. Parameters will be asked step by step. It is
more convenient if your are not familiar with the handling of the parameters.

Note that if you are running the software with windows, and with too
large data, an error might occur. It is due to the management of the stack

with this OS.
3.2 UNIX OS

Extraction and Compilation The archive of the program is provided
with a Makefile for UNIX OS. Thus Compilation is an easy step done like
this:

MyMachine $> make

If ever, for some reasons, you want to clean the repertory of all executable
or binary files, just type:

MyMachine $> make clean
Say hello Once the program compiled, you are ready to run it. You can

do it one first time without parameters, and a Presentation screen will be
displayed. Then the software is run as other usual software for LINUX.

3.3 MAC OS

The software has been initially developped for UNIX type of Operating
system. It is running fine with MAC OS.

4 Command line

Here is a complete list of the parameters of the program, and their meaning.
When a parameter can be unspecified, it is explicitely mentionned. The two
command lines to run the software are the following one:

4.1 LEARN

MyMachine $> ./HaploPOP LEARN -i npop File_popl File_pop2... File_popn
-o OUTPUTFile -p LOCUSPOSITIONSFile (-t Threshold)

-i npop fileyp1 filepopo ... filepy,, : The number and the path/names of
the files containing the genotypes. Each population should be in a different
file.

-0 output : The name to specify will be used for the different output files
produced, such as output.haploID, output.haploIA...

-s size : The size parameter indicates the window size. It can be an
integer, as a number of SNP, or a real if you use physical or genetic distances.
In this case the -p option is compulsory.

-p LOCUSPOSITIONFile This file must be specified only if you use the
subsets based on loci positions. It contains the physical position of every
markers, by increasing order.

-t Threshold An optionnal float, if you want to build only the more
informative haplotypes.

4.2 APPLY

MyMachine $> ./HaploPOP APPLY -i npop File_popl File_pop2... File_popn
-o OUTPUTFile -h HAPLOFile

-i npop fileyp1 fileyopo ... filepy,, : The number and the path/names of
the files containing the genotypes. Each population should be in a different
file.

-0 output : The name to specify will be used for the different output files
produced, such as output.haploID, output.haploIA...

-h HAPLOFile this parameter is the name you want to give to the file
containing the haplotype ID of each initial genetic marker.

5 Files

5.1 input files

Data files The data files are your raw data file. The standard format
consists in a text file with one individual per row. On each and every row
would be written the codes of the alleles of the individual for each marker,
so integers representing a certain SNP, halpotype, or microsatellite allele.
There must be one file per population.

Here is an example of input file for 10 individuals, with 16 genetic mark-
ers. One should note that the integers representing the alleles of one marker
(column), does not have to be consecutive.

1010001010212 410
0000202222010 2 11
0010101012210 7 10
010101212¢0212 5 10
0101202120210 111
010101212¢0212 5 10
001 010101221298 10Q0
000011201201 22%5 10
1 0001020122107 10
1 0102022222010 2 11

This input file can also be a tped file. In this case, an intelligent extrac-
tion of the data will be done if you add the parameter -f, as mentionned
above.

Haplotype file The Haplotype file is an input file in only one case, when
the method chosen is APPLY. In this case, you choose to specify your own
haplotypes to be built. The combinations will be read in this particular
file. It must contain on one row an integer for each marker indicating the
haplotype in which belong the marker.

For example, if you want to combine on the previous data the markers
2, 3, 4, and the markers 1, 12, 13, 14, 15, 16 together, we would use the
APPLY method with the following haplotype file:

1222345678911111‘

Locus Position file This file is useful only if you chose to apply the
SubsetLP method. Then this file must contain all the informations needed
to build the subsets. All the physical positions must be specified on one row
and sorted by increasing order.

For instance, you can have the following Position file for the example
above:

0.23 024 0.26 0.32 033 0.34 092 096 0.97 098 099 1.02 1.04 1.06 1.06 1.2

Such a position file puts in highlight a gap between markers 6 and 7. Then
we could expect the SubsetLP method to be more relevant than the simple
Subset method.

5.2 Output files

.haploID We mentionned this file as an input file, but, depending on the
method, it is also an output file. Actually in most of the methods (all of
them but GivenHaplotype) this file will be written. It is a one row file with
as many integers as markers in the initial dataset. Each integer specifies the
haplotype built with the marker at this position. The i** integer with value
K indicates that the ¥ marker is in the Haplotype K. This format is very
handy for further analysis.

.HaploIA This file indicates the InformativnessforAssignment statis-
tic for each haplotype that has been built.

.nitMarkersIA This file indicates the InformativenessforAssignment
statistic for each marker initially present in the data set.

.struct_haps The .struct_haps file is a structure input type of file [?],
with the haplotypes applied on the input data.
5.3 A toy example for input and output files.

Let’s consider a population input file with 4 individuals and 6 genetic mark-
ers as follows:

101000
000020
001010
01 0101

Let’s say that after combinations markers 1, 2 and 4 needs to be com-
bined together. The resulting haplotypes corresponds for the 4 individuals
to 100, 000,000 and 011.These 3 haplotypes are noted alleles 0,1 and 2. As-
suming there is no other combinations, the resulting .HaploI A file is going
to be the I A of this Haplotype, and the A of the SNPs 3,5 and 6. The
.struct_haps file si going to be:

N = = O
SO = O =
S = NN O
_ o O O

The HaploID file will contain the resulting haplotype that contains each
of the initial marker:

1121 3 4

To perform a PCA on the results, one can use the struct_haps file
and turn it into a presence absence matrix for each haplotype-allele. For
example:

S = O =
O~ N O
—_ o O O

<O O O =
<© — = O
<}—ﬂ o O O

6 Examples

6.1 Learn Haplotypes on two populations with Physical dis-
tances

We give an example of application of the software on some simulated data.
The data, in the files dat/popl.dat and dat/pop2.dat consist in a 2-island
model simulated according to classic coalescent, with ms [?]. In these data,
200 chromosomes are typed on 1000 segregating sites. The 100 first chromo-
somes typed are from the first population, 100 others are from the second.
In addition, we have access to the physical positions of these segregating
sites in the file LP/LPManual.txt. These position are spanned between 0
and 1. One should then pick a size according to this scale. We would chose
0.5. The command would be as follow:

MyMachine $> ./HaploPOP LEARN -i 2 dat/popl.dat dat/pop2.dat -o dat/Example2pops
-s 0.5 -p dat/LP/LPManual.txt

6.2 Apply the Haplotypes on the 2-island data

In this last example we show how to learn the haplotypes. We kept the pat-
tern of the haplotypes in dat/2popsExample.haploID, now this file will be-
come an input file. The new data set will be written in Example2pops_haplo.
We compute the haplotypes as follows:

MyMachine $> ./HaploPOP APPLY -i 2 dat/popl.dat dat/pop2.dat -o dat/Example2pops
-h dat/Example2pops.haploID

Note that usually you do not want the haplotypes to be learn and applied
on the same sets of individuals, because of overfitting.

