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How does evolution tune biological noise?
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Part of molecular and phenotypic differences between individual cells, between body
parts, or between individuals can result from biological noise. This source of variation is
becoming more and more apparent thanks to the recent advances in dynamic imaging and
single-cell analysis. Some of these studies showed that the link between genotype and
phenotype is not strictly deterministic. Mutations can change various statistical properties
of a biochemical reaction, and thereby the probability of a trait outcome. The fact that they
can modulate phenotypic noise brings up an intriguing question: how may selection act on
these mutations? In this review, we approach this question by first covering the evidence
that biological noise is under genetic control and therefore a substrate for evolution. We
then sequentially inspect the possibilities of negative, neutral, and positive selection for
mutations increasing biological noise. Finally, we hypothesize on the specific case of H2A.Z,
which was shown to both buffer phenotypic noise and modulate transcriptional efficiency.
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The recent advances in dynamic imaging and single-cell stud-
ies have revealed the stochastic nature of biochemical reactions.
Numerous factors are known to affect the degree of noise in these
reactions, including temperature (Jo et al., 2005), drug treatment
(Dar et al., 2014), age (Bahar et al., 2006) and, very importantly,
genotypes (Raser and O’Shea, 2004; Levy and Siegal, 2008; Ansel
et al., 2008; Hornung et al., 2012). If mutations can modulate a
reaction without necessarily changing the average concentration
of its product, then they do not fit in the traditional (often deter-
ministic) view of genotype–phenotype control. Such mutations
can change the probabilistic laws of single-cell traits, such as phe-
notypic noise, which may have important consequences at the
multicellular level (Yvert, 2014). Noise has the property to increase
disorder. In contrast, living systems are highly organized, devel-
opmental processes are under many constrains, and numerous
phenotypic traits display robustness to stochastic variation. It is
therefore unclear how optimization and control of noise can affect
both fidelity and diversity. One way to apprehend this is to exam-
ine the mutations that were shown to increase or decrease noise
levels. In this review, we first present evidence that noise is under
genetic control. We then speculate on the ways by which natural
selection acts on it. Finally, we hypothesize on the contribution of
histone variant H2A.Z to noise evolution.

MOLECULAR NOISE IS UNDER GENETIC CONTROL
A wealth of information on molecular noise has been gathered
by the study of gene expression. Tracking fluorescent reporters
in single cells revealed the stochastic nature of gene expression
(Elowitz et al., 2002) and identified mutations that modulate noise
in protein abundance. First, changing the number of copies of
a gene affects its noise level. Several studies showed that noise
scaled with the invert root of copy number and this property
was even used as a tool to separately estimate intrinsic and
extrinsic noise (Volfson et al., 2006; Stewart-Ornstein et al., 2012).

Thus, copy number variations which are abundant in natu-
ral populations (Katju and Bergthorsson, 2013) are a likely
source of noise modulation. Secondly, changing the location
of a gene can also change its expression noise. This was illus-
trated when comparing two integration sites of a reporter system
in yeast (Becskei et al., 2005). It was also later observed when
integrating a reporter system in chicken cells (Viñuelas et al.,
2013). Thus, genetic translocations are another possible way
to modulate noise in gene expression in natural populations.
Consistently, mutations in chromatin modifying enzymes, such
as yeast SAGA, INO80, or SWI/SNF, increased noise (Raser
and O’Shea, 2004) and mutations in several HDAC complexes
were also reported to do so (Weinberger et al., 2012). Remark-
ably, deletion of chromatin-binding factor Sir1 caused stochastic
release of silencing at one of two yeast loci (HML or HMR),
thereby generating cellular states epigenetically transmitted to
daughter cells (Pillus and Rine, 1989; Xu et al., 2006). Thus,
genes encoding chromatin modifiers are possible mutational tar-
gets for modulating expression noise of other genes through
evolution.

Another way to evolve gene expression noise is to alter the
sequence of a promoter region. For instance, yeast genes contain-
ing a TATA box in their promoter have higher expression noise
than average (Zhang et al., 2009) and mutants lacking such TATA
box display lower expression noise (Raser and O’Shea, 2004; Blake
et al., 2006; Murphy et al., 2007; Hornung et al., 2012). It has also
been demonstrated that the number and the location of transcrip-
tion factor binding sites within a promoter can affect expression
noise without changing expression mean (Octavio et al., 2009; To
and Maheshri, 2010). Consistently, each target of the yeast Zap1
transcription factor displays a specific scaling of noise versus mean
in response to zinc exposure (Carey et al., 2013). Similarly, the
sequence of mammalian gene promoters is a primary determi-
nant of the fine-scale dynamics of gene expression bursts (Suter
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et al., 2011). Accordingly, modifying the promoter of a cell-cycle
regulated gene such that a critical transcription factor binding site
became occupied by a nucleosome caused an increase in cell–cell
variability and impairment of growth fitness (Bai et al., 2010). Per-
haps the most direct exploration of the possible evolution of noise
levels by mutations in promoter regions is the work of Hornung
et al. (2012) who studied libraries of mutated yeast promoters.
Two types of mutations (affecting TATA box sequences or gen-
erating out-of-frame ATG) significantly modified burst size and
noise level, and this effect was characteristic of high-noise pro-
moters. Since most of the promoters tested were insensitive to
mutations, the authors suggested that selection might protect pro-
moters from mutations that would affect burst size and therefore
expression noise.

All these observations show that there are many possibilities
by which expression noise levels can evolve in natural popu-
lations. Although the evolution of gene expression has been
intensively studied on the basis of a change in mean expres-
sion levels, studies on how expression noise evolves within and
between species have been very rare. An early investigation by
Ansel et al. (2008) showed that expression noise segregates as a
complex genetic trait. It was later followed up by Fehrmann et al.
(2013) who found that some genetic sources of this noise were nat-
ural mutations in transmembrane transporters. Although these
studies were based on single-cell measurements, it is also pos-
sible to derive similar conclusions by exploring intra-genotype
variation of bulk mRNA levels, as shown in plants (Jimenez-
Gomez et al., 2011) and humans (Hulse and Cai, 2013). In this
case, however, a major difficulty is to properly exclude that the
observed variability is caused by hidden factors. For example,
Francesconi and Lehner (2014) showed that subtle differences
in developmental time between samples could create abundant
intra-genotype diversity. Additional studies on the evolution of
gene expression noise are needed to understand how and when
changes in noise occurred, and whether they were subjected to
selection.

PHENOTYPIC NOISE DIFFERS BETWEEN NATURAL
POPULATIONS
Molecular noise does not systematically generate phenotypic
noise. There are many ways by which living systems can atten-
uate input fluctuations so that their output phenotype remains
stable (see below). Since evolutionary selection acts at the phe-
notypic level, it is important to inspect what evidence supports
(or not) the evolution of phenotypic noise. A first step in this
direction is to investigate whether natural populations display
different levels of phenotypic noise. Note that the term “phe-
notypic noise” relates here to intra-genotype variability, which
can result from stochastic processes or unknown environmen-
tal variation. For some biological systems, this type of noise
can be quantified experimentally. In the yeast Saccharomyces
cerevisiae, single-cell experiments showed that noise in morpho-
logical traits and in cell division time differs between natural
strains (Yvert et al., 2013; Ziv et al., 2013). For multicellular sys-
tems, recombinant inbred lines offer the possibility to measure
phenotypic traits in independent individuals sharing the same
genotype. In maize, inter-individual trait variability was shown

to differ between lines, and genomic regions associated with this
variability could be detected (Ordas et al., 2008). This suggests
that phenotypic noise differs among natural populations. This is
important because microevolution then has the possibility to act
on it.

Investigating phenotypic noise in wild populations is challeng-
ing because of the genetic heterogeneity between individuals. It is
nonetheless possible to examine if the environmental variance dif-
fers between genotypic categories. For example, this was reported
for the weight of wild snails breeded in laboratory conditions (Ros
et al., 2004). When the same phenotypic trait is duplicated on indi-
viduals, such as left and right symmetrical body parts, quantifying
intra-individual trait variation is possible. This way, high levels
of noise in the fly wing morphology could be fixed by applying
artificial selection on a wild population (Carter and Houle, 2011).
For some traits, even more than two independent measures are
available from a single individual. This is the case for plant seeds.
Studies in the wild showed that the variability of germination
timing between seeds differed among populations of the desert
plant Plantago insularis (Clauss and Venable, 2000). It is possible
that part of this variability is not due to genetic heterogeneities
between seeds but is modulated by the plant genotypic back-
ground. Demonstrating this would prove that phenotypic noise
differs among natural populations.

Another way to interrogate the evolvability of phenotypic noise
is to look for mutations causing or reducing it. In this regard,
an interesting example is the genetic perturbation of a signaling
cascade in Bacillus subtillis that generated noise in the fate (sporu-
lation) of individual cells within a clonal mutant population (Eldar
et al., 2009). Other remarkable examples are yeast gene deletions
causing elevated cell–cell variability in morphological traits (Levy
and Siegal, 2008). These examples revealed that phenotypic noise
may evolve by mutating specific gene circuits or by disrupting
pleiotropic genes.

Having said that biological noise is evolvable, can we
hypothesize on the evolutionary forces shaping it? As illus-
trated on Figure 1, we describe possible evolutionary sce-
narios leading to the modulation of molecular and pheno-
typic noise: (i) how negative selection can minimize molecu-
lar noise, (ii) how purifying selection for phenotypic robust-
ness may generate molecular noise, (iii) what neutral forces
contribute to noise accumulation, and (iv) how heterogene-
ity may be positively selected at phenotypic and molecular
levels.

NEGATIVE SELECTION REDUCING MOLECULAR NOISE
Theoretical and experimental work on yeast essential genes
strongly support that purifying selection can maintain low bio-
logical noise at the molecular level. Intuitively, large or durable
fluctuations in the level of an essential protein (i.e., a protein
required for yeast cell division) can be deleterious. This was ini-
tially suggested by a simple model that predicted low expression
noise for essential genes (Fraser et al., 2004). This prediction was
demonstrated after Newman et al. (2006) quantified the level of
expression noise of 4,000 GFP-tagged yeast proteins and Lehner
(2008) correlated noise values with gene essentiality. Another
study further showed that correcting for “gene importance” (the
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FIGURE 1 | Evolutionary scenarios that may tune molecular and

phenotypic noise. Four hypothetical scenarios are represented (columns
A–D).,Evolutionary forces are indicated on diagrams in the upper row. Dark
areas in the molecular and phenotypic landscapes indicate the possible
states of an individual given its genotype. When the state is variable (high
noise) the size of the area is large. Forces that reduce noise (negative
selection) are represented by a screw clamp. Forces that maintain noise
(positive selection) are represented by a prop. Schemes in the middle row
indicate possible molecular architectures involved in these forces. The
bottom rows contain relevant examples of phenotypic output (when
available). (A) Selection forces minimize noise in molecular reactions
directly controlling fitness, such as expression of essential genes in yeast.

Image: yeast cells dividing. (B) Buffering mechanisms allow selection of
low phenotypic noise in the presence of molecular fluctuations. Images:
(a) Highly invariant vulval development in C. elegans. Reproduced from
Eisenmann (2005). (b) Invariant localization pattern of Sonic hedgehog
targets in the chick embryo (red: Olig2 expression, green: Nkx2.2
expression, white: floor plate cells). Reproduced from Dessaud et al.
(2010). (C) Noise freely evolves under neutral selection. Genetic drift
facilitates the appearance of mutations in protein complexes (red stars),
generating network complexity. (D) Positive selection for both molecular
and phenotypic noise. Image: stochastic distribution of cell fates in the
Drosophila eye. Pink: Rh6 photoreceptors. Green: Rh5 photoreceptors.
Courtesy of S. Brown and B. Mollereau.

loss of fitness caused by deleting the gene) is required before inter-
preting expression noise determinants at the genomic scale (Zhang
et al., 2009). It was even suggested that purifying selection against
noise may drive the clustering of essential genes in the genome
(Batada and Hurst, 2007). These genomic analyses all showed that
negative selection is at play to reduce expression noise of essential
yeast genes. They illustrate that the molecular regulations directly
involved in fitness (e.g., cell proliferation) are maintained at low
noise levels. If these molecules participate to other phenotypic
traits, then it is possible that noise of these traits is constrained as
well (Figure 1A).

NEGATIVE SELECTION CAN LIMIT PHENOTYPIC NOISE
WHILE ALLOWING MOLECULAR NOISE
Phenotypic robustness (defined as the persistence of an organis-
mal trait under perturbation) is a characteristic of many biological
systems (Félix and Wagner, 2008). This is particularly illustrated

by developmental processes displaying reproducible outcomes
and noise minimization (Figure 1B). In C. elegans, the somatic
cell lineage is almost invariant between individuals, due to high
reproducibility in cell differentiation (Kipreos, 2005). Similarly,
tissue patterning in response to morphogens is highly reproducible
between embryos. This was shown in Drosophila, where fluctua-
tions in Bicoid concentration were buffered by the slow diffusion of
its target Hunchback (Okabe-Oho et al., 2009). It was also shown
in vertebrates, where dynamic properties of a regulatory network
conferred robustness in the interpretation of the ventral neural
tube gradient of Sonic Hedgehog (Dessaud et al., 2010).

More generally, molecular studies showed that many mech-
anisms can confer robustness of phenotypic outcome in the
presence of molecular noise. These include, among oth-
ers, functional redundancy (Kitano, 2004), negative feed-
back loops that function as low-pass filters (Becskei and
Serrano, 2000), oscillations controlling circadian clocks
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(Barkai and Leibler, 2000) and frequency-modulation regu-
lations by physical shuttling between cellular compartments
(Cai et al., 2008).

Such buffering mechanisms may have apparently paradoxical
evolutionary consequences. While maintaining purifying selection
for phenotypic robustness, they may relax the selective pressure
on molecular noise. If a large genotype space is not expressed
as phenotypic variation, genetic mutations have the possibility to
evolve neutrally, resulting in the accumulation of cryptic genetic
variations. Experimental evidence showed that these buffering
mechanisms depend on the environment (Braendle and Félix,
2008) and differ across evolutionary branches (Félix, 2007). Thus,
molecular noise may evolve by neutral drift (and possibly accu-
mulate) as a result of purifying selection for robustness in living
systems.

NOISE EVOLUTION UNDER FULLY NEUTRAL SELECTION
Phenotypic traits are not constantly under selective pressures.
Situations of small population size or prolonged isolation from
environmental constrains let species accumulate mutations that
would otherwise be eliminated by purifying selection (Lynch,
2013). When a species experiences such episodes, both molec-
ular and phenotypic noise may freely evolve toward lower or
higher levels (Figure 1C). Some evidence suggests that this could
happen via the evolution of the hubs of protein networks. In
populations of reduced size, the accumulation of mildly dele-
terious mutations was proposed to generate high complexity
of protein–protein interactions. Fernández and Lynch (2011)
reported evidence from protein structures that such mutations
may be compensated by secondary recruitments of interact-
ing partners, which would maintain critical cellular functions.
This way, episodes of neutral evolution may increase connec-
tivity in protein networks. Consistently, the constructive neutral
evolution theory proposed that, in large populations, increased
molecular complexity can be directionally driven without pos-
itive selection (Gray et al., 2010; Lukeš et al., 2011). This can
generate hubs in protein networks, which can have substantial
consequences on noise regulations. If a protein interacts with
more partners, the probability to interact actively with any one
of them diminishes (competition between partners). This may
change the dynamics of molecular regulations by introducing
time delays in the formation of complexes, thereby increasing
noise. In addition, the structure of proteins is intrinsically plas-
tic (Ward et al., 2004; Uversky and Dunker, 2010), and it was
shown that the structure of some hub proteins tend to be more
disordered than average (Kim et al., 2008). Thus increasing the
number of protein–protein interactions may generate unstable
hubs–partner associations, with possible consequences on phe-
notypic variability. Collecting additional examples of phenotypic
noise variation in natural populations is needed to confirm this
possibility.

Finally, noise may in return affect evolutionary selec-
tion. Using a mathematical model, Wang and Zhang (2011)
showed that phenotypic noise can reduce the proportion of
the population that is exposed to positive or negative selec-
tion. This way, the truly effective population size is reduced,
which then favors neutral evolution. Thus, elevated noise

may both be a consequence of and a contributor to neutral
evolution.

POSSIBLE POSITIVE SELECTION FOR ELEVATED NOISE
In general, noise is unlikely to be positively selected since it shifts
phenotypic traits away from their fitness optimum. However,
many examples illustrate how biological systems can exploit noise
to their advantage. Anticipative adaptation based on phenotypic
heterogeneity has been reported for unicellular organisms. In sev-
eral cases, observations agreed with an increased geometric mean
fitness across generations at the cost of decreasing the arithmetic
mean, an investment called “bet-hedging” (Simons, 2011). These
include the presence of slow-growing “persister” cells in clonal
populations of E. coli which survive antibiotic treatment (Bala-
ban et al., 2004). Similarly, clonal yeast populations were shown
to contain a minority of slow-dividing cells that could survive
extreme heat shock (Levy et al., 2012). Whether such bet-hedging
strategies are favored over responsive strategies based on envi-
ronmental sensing was investigated using simulations. Results
suggested that this can be the case if environmental changes are
infrequent and unpredictable and if responsive mechanisms have
greater cost than benefit (Thattai and van Oudenaarden, 2004;
Kussell and Leibler, 2005). However, demonstration of direct selec-
tion for heterogeneous phenotype is challenging and has only
rarely been achieved. By artificially selecting phenotypic hetero-
geneity through experimental evolution, Beaumont et al. (2009)
showed that positive selection for phenotypic noise is possible
in bacteria. Although evidence is even more difficult to collect
in the wild, the diversification of timing of Lobelia inflata seed
germination indicates that such selection may occur in nature
(Simons, 2009).

In addition to these phenotypic observations, molecular sig-
natures suggesting positive selection for expression noise were
found in the yeast genome. Genes involved in stress response,
especially those containing a TATA box, display high noise lev-
els in standard growth conditions (Bar-Even et al., 2006; Lehner,
2010). Genes coding for trans-membrane transporters display
both elevated noise in expression and indication of natural selec-
tion for it (Zhang et al., 2009), and a wild allele of one of these
transporters was associated with increased gene expression noise
(Fehrmann et al., 2013).

In multicellular organisms, the contribution of molecular noise
to cellular differentiation was proposed long ago by Kupiec (1996)
who hypothesized that non-genetic variability could generate a
diversity of cellular states on which Darwinian selection could act.
This concept is now the focus of active experimental investigations.
Clonal populations of hematopoietic stem cells were shown to dis-
play heterogeneity associated with variable outcomes in progenitor
cell differentiation (Chang et al., 2008). A transient phase of noisy
gene expression related to stochastic epigenetic alteration was also
associated with cell reprogramming (Buganim et al., 2012). Sim-
ilarly, the differentiation of T cells into distinct lineages is not
strictly deterministic in response to mixed signals (Antebi et al.,
2013). A striking example of noise-associated fitness advantage
was identified in the Drosophila eye, where different photorecep-
tor types were distributed according to non-repetitive patterns
that improved eye perception. This distribution is achieved by the
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FIGURE 2 | Possible contribution of H2A.Z histone variant to noise

evolvability. Two classes of genes are considered. (A) Genes expressed
constitutively. The presence of H2A.Z in the (+1) nucleosome facilitates
transcriptional elongation, which may reduce expression noise. In this case,
H2A.Z inactivation can increase expression noise of constitutive genes and

this would explain the observed phenotypic heterogeneity. (B) Genes
responding to environmental changes. Presence of H2A.Z in gene bodies
correlates with silencing of transcription in the absence of external stimuli.
This can enable accumulation of cryptic variations that diversify phenotypes if
H2A.Z is inactivated.

stochastic expression of spineless which may be a way to avoid
controlling a highly complex deterministic pattern (Wernet et al.,
2006). In fact, maintaining fully deterministic processes in all dif-
ferentiation pathways is probably costly. Driving some cell fate
decisions by constrained stochastic processes might be efficient
at lower costs, which argues for positive selection for elevated
noise.

DOES H2A.Z CONTRIBUTE TO NOISE EVOLUTION?
The case of H2A.Z is particularly interesting regarding noise
evolution. This histone variant has simultaneously received atten-
tion from two poorly connected research fields. On one side,
biologists working on chromatin regulations have characterized
where and how this variant of histone H2A is incorporated in
the chromatin. They showed that H2A.Z is highly conserved
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across evolution, that it is essential to many organisms (Jack-
son and Gorovsky, 2000; Bönisch and Hake, 2012), and that its
presence in the chromatin affects the transcriptional response
to environmental cues as well as the efficiency of transcriptional
elongation (Hardy et al., 2009; Santisteban et al., 2011; Coleman-
Derr and Zilberman, 2012; Weber et al., 2014). In parallel and
rather independently to these mechanistic studies, H2A.Z was
identified in a screen for genes conferring robustness to pheno-
typic variations. Using single-cell data from S. cerevisiae mutants,
Levy and Siegal (2008) found that both H2A.Z and SWR1 (the
chaperone that loads H2A.Z on chromatin) have high pheno-
typic potential, a measure of phenotypic variance when the gene
is deleted. The study also showed that H2A.Z interacts physically
with many proteins and genetically with many genes via epista-
sis, characteristics that are predicted to confer buffering capacities
(Levy and Siegal, 2008). These authors later reported that dele-
tion of H2A.Z also increased the variance of cell division rates,
a typical feature of anticipative adaptation to stress via slow-
growing colonies (Levy et al., 2012). The buffering capacity of
H2A.Z was also confirmed in mutation accumulation lines, where
it was shown to interact epistatically with mutations. This, how-
ever, was unrelated to a general increase of mutational robustness
(Richardson et al., 2013).

How can the known mechanistic roles of H2A.Z explain this
phenotypic buffering? We propose two complementary scenarios.
The first one concerns genes expressed constitutively (Figure 2A).
Yeast cells lacking H2A.Z are hypersensitive to drugs or muta-
tions that impair transcriptional elongation (Santisteban et al.,
2011). Consistently, H2A.Z was shown to facilitate elongation by
decreasing the barrier effect of the nucleosome located imme-
diately downstream the transcription start site (+1 nucleosome;
Weber et al., 2014). In parallel, impairment of elongation, such
as treatment with 5-azauracil, deletion of yeast TFIIS, PAF1 sub-
units, or SPT4 were all shown to increase gene expression noise
(Ansel et al., 2008). It is therefore possible that the high phe-
notypic noise among cells lacking H2A.Z results from increased
molecular noise, which itself emerges from inefficient transcrip-
tional elongation. The presence of H2A.Z would then contribute
to lower both molecular and phenotypic noise. Secondly, H2A.Z
may affect noise levels by its repressive action on responsive genes
(Figure 2B). Incorporation of H2A.Z in the body of genes corre-
lates with reduced expression (Hardy et al., 2009). In A. thaliana,
H2A.Z across gene bodies is associated with gene functions related
to environmental response and could maintain repression in the
absence of stimulus (Coleman-Derr and Zilberman, 2012). This
may be seen as a buffering mechanism against molecular noise.
If a set of genes is maintained silenced in neutral environments
because of H2A.Z-dependent repression, the phenotypic expres-
sion of their mutations can depend on H2A.Z. This epistasis could
generate the observed high phenotypic noise in yeast mutants
lacking H2A.Z. Functional studies will be needed to determine if
H2A.Z has such a predominant role in the evolution of molecular
and phenotypic noise.
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