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ABSTRACT 28 

 29 

More and more natural DNA variants are being linked to physiological traits. Yet, 30 

understanding what differences they make on molecular regulations remains challenging. 31 

Important properties of gene regulatory networks can be captured by computational models. If 32 

model parameters can be 'personalized' according to the genotype, their variation may then 33 

reveal how DNA variants operate in the network. Here, we combined experiments and 34 

computations to visualize natural alleles of the yeast GAL3 gene in a space of model 35 

parameters describing the galactose response network. Alleles altering the activation of Gal3p 36 

by galactose were discriminated from those affecting its activity (production/degradation or 37 

efficiency of the activated protein). The approach allowed us to correctly predict that a non-38 

synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional 39 

repressor. Our results illustrate how personalizing gene regulatory models can be used for the 40 

mechanistic interpretation of genetic variants. 41 

 42 

 43 

 44 

  45 
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INTRODUCTION 46 

 47 

In the past decade, countless DNA variants have been associated to physiological 48 

traits. A major challenge now is to understand how they operate at the molecular level. This is 49 

a difficult task because the mechanistic consequences resulting from each variant are not easy 50 

to identify. Even when the function of a gene is well documented, investigators need to 51 

determine the tissues, cells or organelles in which a mutant allele makes a biological 52 

difference, the developmental stage at which this may happen, the metabolic or regulatory 53 

network that may be involved, as well as possible molecular scenarios. A mutation may alter 54 

the regulation of transcription or mRNA splicing; the enzymatic activity of the target protein; 55 

its rate of production, maturation, or degradation; its intracellular localisation; its binding 56 

affinity to an interacting partner or the specificity of its molecular interactions. In the vast 57 

majority of cases, information from the DNA sequence alone is not sufficient to delimit the 58 

perimeter of possible implications. 59 

 60 

Systems biology has opened new opportunities to better predict the action of DNA 61 

variants. First, 'omics' data that are gathered at various levels (DNA, transcripts, proteins, 62 

metabolites...) establish relations between target sequences and functional pathways. 63 

Information about molecular and genetic interactions, expression profiles, chromatin 64 

landscapes, post-transcriptional and post-translational regulations can be exploited to derive 65 

functional predictions of DNA variants. Various methods have been proposed to do this, such 66 

as Bayesian genetic mapping1, visualization of SNPs on relational protein networks2, 67 

prioritization based on negative selection3, or inference of miRNA:RNA binding defects4. In 68 

addition, structural data of biomolecules can also highlight functional perturbations in specific 69 

domains such as catalytic sites or interaction surfaces5,6. 70 
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 71 

Another alternative is to model the quantitative and dynamic properties of molecular 72 

reactions and to explore which feature(s) may be affected by a DNA variant. The functional 73 

consequences of mutations can then be inferred by considering their impact on specific 74 

parameters of the model. In other words, assigning function to a DNA variant may be 75 

straightforward after it is linked to parameters of a model. This perspective may also, on the 76 

long term, generate developments in personalized medicine: if a model can be personalized 77 

according to the patient's genotype then it can help predict disease progress or treatment 78 

outcome and therefore adapt medical care to the patient's specificities. For this to become 79 

reality, the model must be i) informative on the biological trait of interest and ii) identifiable 80 

and sufficiently constrained so that model parameters can be reliably inferred, accounting for 81 

the patient's specificities. These two requirements antagonize each other regarding the 82 

complexity of the model to be used. The former asks for completeness: the molecular control 83 

of the trait must be correctly covered by the model, describing known reactions as best as 84 

possible. The latter asks for simplicity: if too many parameters are allowed to be adjusted to 85 

the data, then the validity of the personalized model is questionable and none of the 86 

adjustments are informative. It is therefore important to determine if and how personalizing 87 

model parameters can be productive. 88 

 89 

For a given molecular network, individuals from natural populations have different 90 

genotypes at several nodes (genes) of the network, as well as in numerous external factors that 91 

can affect the network properties. Such external factors can modify, for example, global 92 

translation efficiencies, metabolic states, or pathways that cross-talk with the network of 93 

interest. Adapting model parameters to specific individuals is challenging when so many 94 

sources of variation exist. A way to circumvent this difficulty is to study the network 95 
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experimentally in the context of a more reduced and focused variation. If investigators have 96 

access to nearly-isogenic individuals that differ only at specific genes of the network, they can 97 

then characterize the differences in network behaviour that result from these specific allelic 98 

differences. The numerous external factors affecting the network can then be ignored or 99 

drastically simplified in the model because they are common to all individuals. This way, the 100 

parameter space is constrained and only potentially-informative parameters are allowed to be 101 

adjusted to fit individual-specific data. 102 

 103 

Some model organisms such as the yeast S. cerevisiae offer this possibility. They can 104 

be manipulated to generate single allelic changes, which provides an ideal framework to link 105 

DNA variants to model parameters. In particular, the gene regulatory network controlling the 106 

yeast response to galactose (GAL network) is well characterized, both in vivo and in silico. 107 

This circuit controls galactose utilization by upregulating the expression of regulatory and 108 

metabolic genes in response to extracellular galactose7. Regulation is based on the 109 

transcriptional activator Gal4p, the galactose transporter Gal2p, a signal transducer Gal3p and 110 

the transcriptional inhibitor Gal80p. In addition, the galactokinase Gal1p, involved in 111 

galactose metabolism is also a coinducer of the response8. This system can display either a 112 

gradual induction (where the rate of transcription progressively increases in each cell 113 

according to the timing and intensity of the stimulus) or a probabilistic induction (where the 114 

probability of having high/low rate of transcription in each cell varies). This dual behaviour 115 

has received a lot of attention and important molecular features have been elucidated by 116 

experimental and theoretical approaches9–12. In particular, the dynamic response of a 117 

population of cells to galactose can be described by two quantities: the inducibility of the 118 

network is defined as the proportion of activated cells in the population, and the amplitude of 119 

the response refers to the expression level that is reached by induced cells. Regulatory 120 
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feedback loops of the network are critical to the switch-like behaviour. They were shown to 121 

feed back the dynamics of transcription bursts rather than the levels of expression13. They 122 

regulate the amplitude response by reducing noise in GAL gene expression14, they control the 123 

inducibility by fine-tuning the timing of the switch14, and they participate to the memory of 124 

previous inductions15,16. As a consequence, bimodal distributions of expression of the GAL 125 

genes can be observed in isogenic populations exposed to intermediate concentrations of 126 

inducer17–19, and this population heterogeneity can confer a growth advantage during the 127 

transition from glucose to galactose metabolism (diauxic shift)20. Interestingly, wild yeast 128 

isolates present diverse types of induction dynamics during the diauxic shift, ranging from 129 

strictly unimodal to transient bimodal distribution of expression levels21,22. This indicates that 130 

natural genetic variation can modify the network dynamics. 131 

 132 

The GAL3 gene plays a central role in the network. Its protein product Gal3p is 133 

activated by binding to galactose and ATP and then binds as a dimer to Gal80p dimers to 134 

release the repression on Gal4p at target promoters7. The protein is enriched in the cytoplasm 135 

prior to stimulation and in the nucleus after the stimulation, although this cyto-nuclear 136 

transfer does not account for the dynamics of activation23,24. Expression of GAL3 is itself 137 

under Gal4p/Gal80p control (positive feedback). In addition, the sequence of GAL3 differs 138 

between natural isolates of S. cerevisiae and this allelic variation was recently associated to 139 

different sensitivities of the network to galactose (Lee et al. PLoS Genetics, in press). There 140 

are multiple ways that a GAL3 variant could affect the dynamics of induction: by modifying 141 

the production or degradation rates of the Gal3p protein or of its messenger RNA, by 142 

changing the affinity of Gal3p to galactose or ATP, by changing the capacity of Gal3p to 143 

dimerize, by changing the nucleocytoplasmic ratio of Gal3p molecules, or by changing the 144 

affinity of Gal3p to Gal80p. A GAL3 variant may also affect the background expression level 145 
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of Gal3p prior to stimulation, which is known to be critical for network memory of prior 146 

stimulations25. Thus, it is difficult to predict the functional consequence of sequence variation 147 

in GAL3. 148 

 149 

Using the yeast GAL3 gene as a model framework, we show here that experimental 150 

acquisitions combined with network modeling is efficient to predict the effect of sequence 151 

variants. The principle of the approach is to link genetic variation to informative changes of 152 

parameter values of the model. We show that replacing natural GAL3 alleles can be sufficient 153 

to transform a gradual response into a probabilistic activation, and the approach allowed us to 154 

distinguish between different types of GAL3 alleles segregating in S. cerevisiae populations: 155 

those altering the activation of Gal3p by galactose, and those altering the strength with which 156 

activated Gal3p alleviates the transcriptional inhibition operated by Gal80p. In particular, our 157 

approach was efficient to associate a non-synonymous SNP with a change of binding affinity 158 

for Gal80p. 159 

160 

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/140467doi: bioRxiv preprint first posted online May. 20, 2017; 

http://dx.doi.org/10.1101/140467
http://creativecommons.org/licenses/by/4.0/


 9 

RESULTS 161 
 162 

Natural variation in GAL3 affects the dynamics of network induction 163 

We constructed a panel of yeast strains that were all isogenic to the reference 164 

laboratory strain BY, except for GAL3. At this locus, each strain carried an allele that was 165 

transferred from a natural strain of the Saccharomyces Genome Resequencing Project26 166 

(Supplementary Fig. 1). All strains of the panel also harboured a PGAL1-GFP reporter of 167 

network activity, where the promoter of the GAL1 gene controlled the expression of a GFP 168 

fluorescent protein destabilized by a degradation signal27,28. GAL1 is a paralogous gene of 169 

GAL329 and transcription at its promoter is commonly used as a proxy of GAL network 170 

activity15,20,22. Using flow cytometry, we monitored the dynamics of network activation in 171 

each strain (Fig. 1). This was done by first culturing cells for 3 hours in a medium containing 172 

2% raffinose, a sugar known to be neutral on network activity, adding galactose (0.5% final 173 

concentration), and quantifying fluorescence at multiple time points for 4 hours. Significant 174 

differences in the dynamics of activation were observed between the strains. Those 175 

harbouring the GAL3NCYC361, GAL3K11, GAL3BY, GAL3DBVPG1788, GAL3DBVPG1853 and 176 

GAL3JAY291 alleles displayed a gradual response, all cells of the population were induced and 177 

responded with similar rate of expression, maintaining population homogeneity (see example 178 

shown in Fig. 1a). In contrast, strains harbouring the GAL3Y12 and GAL3YJM978 alleles 179 

displayed a binary response, with a transient co-existence of induced (ON) and uninduced 180 

(OFF) cells in the population (example in Fig. 1b).   181 

We quantified induction using two metrics: the mean level of reporter expression in 182 

activated cells (response amplitude), and the proportion of activated cells in the population 183 

(inducibility of the network). We observed that the response amplitude varied little among the 184 

strains, all of them approaching steady state with comparable kinetics (Fig. 1c). In contrast, 185 

inducibility of the network differed between strains (Fig. 1d). As expected, in strains showing 186 
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a gradual response, the fraction of ON cells increased significantly during the first two hours 187 

of induction, reaching full inducibility (all cells activated) by the end of the experiment. On 188 

the opposite, the strains showing a transient binary response displayed reduced inducibility 189 

over time. For instance, 21% of GAL3Y12 cells were still not induced after 250 minutes of 190 

stimulation. These results indicate that natural genetic variation in GAL3 is sufficient to 191 

modify the inducibility of the network and to convert a gradual response into a binary 192 

response, or vice versa. 193 

 194 

A quantitative model of inducibility over time 195 

To examine what functional properties of the GAL3 gene could determine a gradual or 196 

a binary response, we constructed a dynamic stochastic model of the network (Fig. 2a). We 197 

based our quantitative model on the following current molecular knowledge. In absence of 198 

galactose, a homodimer of the transcription factor Gal4p is constitutively bound to upstream 199 

activation sites (UAS) of promoter regions of GAL genes. However, transcription is inactive 200 

because of the homodimeric Gal80p inhibition of Gal4p30,31. When intracellular galactose 201 

binds Gal3p, it changes conformation and associates with Gal80p dimers32, thereby releasing 202 

Gal80p from promoters and allowing Gal4p-mediated transcriptional activation. It was 203 

initially thought that activated Gal3p sequestered Gal80p in the cytoplasm, preventing it from 204 

its inhibitory role in the nucleus30. Later studies revised this view by showing that Gal3p 205 

molecules were not exclusively cytoplasmic23, that forcing Gal3p to be mostly nuclear did not 206 

alter the kinetics of induction23, and that the dynamics of nucleocytoplasmic trafficking were 207 

too slow to explain the fast induction of transcription24. This implies a direct role of Gal3p in 208 

promoting the dissociation of Gal80p from UAS. In addition, the galactokinase Gal1p (a 209 

paralog of Gal3p) can also act as a co-inducer of the regulatory circuit, presumably using 210 

similar mechanisms as Gal3p18.  211 
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Our model covers the mRNA and protein species of three major players of GAL 212 

network induction: GAL1, GAL3 and GAL80, as well as of the reporter gene. We considered 213 

that promoters of each GAL gene could switch between an ON state (full transcription) and 214 

an OFF state (leaky transcription) at rates that depended on the concentration of Gal80 215 

dimers, activated Gal3p dimers and activated Gal1p dimers. A detailed description of the 216 

model is given in Materials and Methods and in Supplementary Text 1. Most of the 217 

parameters of the model were fixed at values obtained from previous studies (Table S1). 218 

 219 

Stochastic simulations reproduce the two types of induction observed experimentally 220 

We first explored if our model captured the two types of responses of allele-221 

replacement strains (i.e. binary and gradual). We ran stochastic simulations33 that accounted 222 

for intrinsic and extrinsic sources of noise (see Supplementary Text 1). We observed that 223 

tuning the parameters related to GAL3, while keeping all other parameters constant, was 224 

sufficient to modify inducibility and to obtain either a gradual (Fig. 2b) or a binary (Fig. 2c) 225 

response of the network at a given concentration of galactose. In the gradual system, the 226 

simulated single-cell trajectories were all similar; in the binary system, the simulated single-227 

cell trajectories bifurcated with a subset of cells having a stochastic lagging time before 228 

responding. The single-cell value of this lag time is directly correlated with the number of 229 

potential inducer proteins (Gal1p and Galp3p) present in the cell just before induction 230 

(Supplementary Fig. 2). This is in very good agreement with recent single-cell experiments on 231 

galactose induction25.  232 

We then studied the response predicted by the model when stimulating the network 233 

with various concentrations of galactose while keeping model parameters constant 234 

(Supplementary Fig. 3). Inducibility increased with the concentration of galactose, with low 235 

concentrations causing a probabilistic induction (binary) and high concentrations a 236 
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deterministic one (gradual). 237 

 238 

Two parameters related to GAL3 control network behaviour 239 

A detailed analysis of the model showed that inducibility of the system was mainly 240 

controlled by the average values of promoter switching rates kon and koff at the time of 241 

induction (see Material and Methods, Supplementary Text 1 and Supplementary Figs. 2 and 242 

4). Rates koff depend only on GAL80 and are therefore invariant to GAL3 allelic variation. 243 

Rates kon depend on GAL3 in two ways: via Gal3p*, the amount of galactose-activated Gal3p, 244 

and via K3, which corresponds to an effective concentration encompassing the dissociation 245 

constants of the Gal3p-Gal80p interaction and of Gal3p dimerization (see Supplementary 246 

Text 1). Gal3p* is determined by the level of Gal3p and by parameter Kgal, which represents 247 

the typical concentration of galactose needed to efficiently activate Gal3p. While Kgal was 248 

identifiable, several other GAL3-related parameters, such as those controlling the level of 249 

Gal3p, were not and we grouped them in a meta-parameter, ρGal3, which we termed the 250 

strength of GAL3. ρGal3 corresponds to the invert ratio between K3 and the mean 251 

concentration of Gal3p at the time of induction, which depends on the leaky transcription rate, 252 

the translation rate and the degradation rates of GAL3 mRNA and protein product. 253 

 254 

This formalism made the network sensitive to only two identifiable GAL3-related 255 

parameters, Kgal and ρGal3. At a fixed concentration of galactose induction, high ρGal3 values 256 

correspond to high numbers of Gal3p dimers that can rapidly be activated to release Gal80 257 

repression. The model predicted that high values of ρGal3 would generate a gradual response 258 

(Supplementary Fig. 5a) because the number of potential activators was high enough in each 259 

cell to rapidly trigger the GAL1/GAL3-mediated positive feedback loop. In contrast, low 260 

values of ρGal3 would generate a binary response (Supplementary Fig. 5b) because the number 261 
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of activators is more stochastic, with many cells having too few initial Gal1p or Gal3p dimers 262 

to directly trigger the response. These cells need a lag time before fast activation (Fig.2b,c and 263 

Supplementary Fig. 2). The other important parameter, Kgal, corresponded to a threshold of 264 

galactose concentration below which induction was limited and favoured a binary response, 265 

and above which induction was efficient and favoured a gradual response (Supplementary 266 

Fig. 3c). In summary, both ρGal3 and Kgal values can determine whether the network adopts a 267 

gradual or a binary response at a given concentration of galactose induction. 268 

 269 

Linking GAL3 alleles to specific parameter values 270 

In order to test the predictions of the model, we measured the transcriptional response 271 

of the GAL3BY, GAL3Y12 and GAL3YJM978 strains at different galactose concentrations (0.05%, 272 

0.1% and 0.5%). Our experimental observations confirmed that the inducibility increases with 273 

galactose concentration (Fig. 3a). We then used this experimental data to infer parameters 274 

!!"#! and !!"# for each of the three strains. This was done by selecting a set of parameters 275 

that minimized a global chi2-score of deviation between the measured and predicted fractions 276 

of induced cells at different times after induction and for the different galactose 277 

concentrations (for details, see methods and Supplementary Text 1). To evaluate the 278 

usefulness of the inferred parameter values, we used the fitted model to predict the behaviour 279 

of each strain at a galactose concentration that was not used for model training (0.2%) (Fig. 280 

3b). Finally, to test model predictions, we experimentally monitored GAL3BY, GAL3Y12 and 281 

GAL3YJM978 induction at 0.2% galactose. Without any additional fitting procedure, we 282 

observed that inducibility (fraction of activated cells over time) differed between strains in a 283 

way that was entirely consistent with model predictions. Thus, the differences among 284 

parameter values assigned to the different GAL3 alleles are relevant outside the specific 285 

experimental conditions used for parameters estimation. 286 
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  287 

Natural GAL3 alleles map to distinct locations of the parameter space 288 

We sought to classify GAL3 alleles based on the parameter values assigned to them. 289 

We made experimental measurements on two additional strains (GAL3NCYC361 and 290 

GAL3DBVPG1788) and we determined best-fit ρGal3 and Kgal values to them as for the three 291 

strains described above.  This data and the corresponding fitted models are shown in 292 

Supplementary Fig. 6. Fig. 4a,b shows the obtained parameters, !!"#! and !!"#, normalized 293 

by the corresponding values of our reference strain GAL3BY. Different data points represent 294 

results obtained by applying the inference process to models with different GAL3-295 

independent parameters (see Supplementary Text 1). 296 

The fold change of a parameter between two different strains is indicative of the 297 

functional nature of the genetic variations between the two GAL3 alleles. In agreement with 298 

the model predictions (Supplementary Fig. 3), we observed that more gradual strains 299 

(GAL3NCYC361 and GAL3DBVPG1788) display a high GAL3 strength !!"#! and a low ‘typical’ 300 

galactose concentration !!"#. Interestingly, we observed that !!"#! and !!"# can be de-301 

correlated. In particular, although both GAL3YJM978 and GAL3Y12 strains were binary 302 

responders at all galactose concentrations tested, the model attributed this behaviour to 303 

different functional effects: a low sensitivity to galactose (high Kgal) for the Gal3 protein 304 

originating from YJM978 and a reduced strength of the GAL3 gene originating from Y12.  305 

Thus, the induction specificities of the strains can be attributed to distinct GAL3-related 306 

parameters. 307 

To address the direct relationship between the network properties (gradual or binary 308 

response) and the GAL3-related parameters, we positioned each of the tested strains within a 309 

phenotypic landscape according to their relative !!"#! and !!"# parameters (Fig 4c). 310 

According to our model, !!"#! and !!"# parameters are sufficient to predict the behaviour 311 
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(gradual or binary) associated with a given GAL3 allele at a given concentration of galactose. 312 

As an illustration of these predictions, we specifically observed the dynamics of 313 

transcriptional activation of the network for the strain GAL3DBVPG1788 (Fig. 4d).  The position 314 

of the GAL3DBVPG1788 allele on the phenotypic landscape corresponded to a transient 315 

probabilistic activation at low concentration ([gal]=0.05%) converted into a gradual response 316 

at higher concentration ([gal]=0.1% and [gal]=0.5%).  317 

 318 

Variation in induction dynamics is consistent with variation in diauxic shift decision 319 

The physiological relevance of the GAL network regulation is to switch from the 320 

consumption of glucose (the preferred carbon source) to the consumption of galactose when 321 

glucose supply is running out. This diauxic switch is controlled not only by galactose 322 

induction but also by glucose-mediated repression. When both sugars are present, their 323 

relative concentration ratio determines whether cells activate the switch or not 20,21,34. At some 324 

ratio values, only a fraction of the cells are induced, even at the steady-state. Given this dual 325 

regulation, the propensity of a strain to activate GAL metabolism can be quantified by 326 

measuring the fraction of induced cells after a prolonged period (8 hours) of simultaneous 327 

induction (by galactose) and repression (by glucose). If this measurement is repeated at a 328 

given concentration of galactose and various concentrations of glucose, a useful score can be 329 

computed (called 'decision threshold' hereafter): the concentration of glucose needed to 330 

maintain half the population of cells in the repressed (OFF) state (Fig. 5a). A high decision 331 

threshold corresponds to an early activation of GAL genes during the diauxic shift. 332 

 333 

A previous study identified GAL3 as an important genetic determinant for this 334 

decision: the concentration ratio at which cells turn GAL expression ON differs between 335 

strains harbouring different natural alleles of GAL3 (Lee et al. PLoS Genetics, in press). We 336 
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asked if this variation was correlated with the variation observed on the dynamics of network 337 

induction. We chose four strains that showed different decision thresholds because of 338 

different GAL3 alleles (Fig 5b) (Lee et al. PLoS Genetics, in press) and we monitored their 339 

dynamics of induction at three different concentrations of galactose (with no glucose). We 340 

then used our model to assign !!"#! and !!"# parameter values to each strain. Experimental 341 

data and model fitting are shown in Fig. 5b and Supplementary Fig. 7. We used the inferred 342 

parameter values to visualize the four strains in the parameter space where binary and gradual 343 

responses upon stimulation at [gal] = 0.25% are delimited (Fig. 5d). Remarkably, the 344 

properties of induction dynamics in absence of glucose were fully consistent with the decision 345 

threshold during diauxic shift from glucose to galactose. Strains having a low decision 346 

threshold, such as GAL3YJM421, displayed a transient binary response, and strain GAL3BC187 347 

had a high decision threshold and responded gradually. Coordinates of strains in the 348 

parameter space indicate that !!"#! values are highly informative on the decision threshold 349 

(Fig. 5d). Thus, mapping allelic variation to dynamic parameters of induction is also useful to 350 

understand trade-offs that are observed at steady-state. 351 

 352 

A quantitative parameter change predicts a role of H352D SNP on Gal3:Gal80 complex 353 

formation 354 

We noticed that, at position 352 of the Gal3p protein, all natural strains harboured an 355 

aspartic acid, whereas the reference laboratory strain BY harboured a histidine. This aspartic 356 

acid was also conserved in S. mikatae, S. paradoxus and S. uvarum protein sequences35. 357 

Given the prevalence of this aspartic acid, we hypothesized that a single H352D amino-acid 358 

change could have consequences on Gal3p regulatory function. 359 

To test this, we generated an artificial GAL3BY-H352D allele by introducing the H352D 360 

mutation in the GAL3BY strain and we monitored the dynamics of induction of the resulting 361 
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strain. At similar concentrations of galactose, induction was faster for the modified strain than 362 

for the original strain (compare Fig. 6a with Fig. 2a). We then used our model to make 363 

functional predictions. We fitted our model to experimental data of induction as described 364 

above for natural alleles. Induction dynamics of the modified strain were fully explained by 365 

preserving parameter !!"# and increasing !!"#! (Fig. 6b). This suggested that the H352D 366 

mutation did not affect activation of Gal3p by galactose but rather the strength of Gal3p, 367 

which summarizes six biochemical features: the basal level of GAL3 transcription prior to 368 

induction, its translation and degradation rate, the degradation rate of its coding mRNA, its 369 

capacity to homodimerize and the affinity of activated Gal3p for Gal80p. 370 

How the implicated SNP could change either the leaky transcription level prior to 371 

induction or the transcription rate during induction is difficult to imagine. In addition, the 372 

amino-acid change was not surrounded by any particular peptide motif, nor was it located at 373 

the extremity of the protein. This did not support for an effect on translation or degradation 374 

rates. Thus, the most plausible interpretation of the parameter change of the model was that 375 

the H352D modification would increase either the capacity of Gal3p* to dimerize or the 376 

affinity of the Gal3p* dimer for Gal80p. 377 

To explore these possibilities, we analyzed the structure of the heterotetramer 378 

[Gal3p*]2-[Gal80p]2 that was previously solved32. We made three important observations. 379 

First, His352 is located at the binding interface of the Gal3p* dimer with the Gal80p dimer 380 

(Fig. 6c), and distant from the pocket containing galactose and ATP. Secondly, it is spatially 381 

close to the Gal80p site where the acidic domain of Gal4p is known to bind36. Finally, the 382 

Gal80p dimer exhibits a positive electrostatic surface potential in the vicinity of Gal3p-383 

His352, suggesting that the replacement of the neutral His352 by a negatively charged 384 

aspartic acid would stabilize the Gal3p*-Gal80p complex. Stabilization refers here to a gain in 385 

thermodynamic stability relative to the Gal4p-Gal80p complex, or in other words, to a 386 
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decrease of Gibbs free energy change (ΔGsub) for the substitution of the Gal4p dimer by the 387 

Gal3p dimer as binding partner of the Gal80p dimer. A molecular dynamics simulation of the 388 

Asp352 mutant (in a model system of the Gal3p*-Gal80 complex) indicates that two 389 

positively charged amino acids, Gal3p-Arg362 and Gal80p-Lys287, are able to form direct 390 

salt bridges with Asp352 (Fig. 6d). These attractive interactions of Asp352 with its 391 

environment are, however, expected to be partially cancelled out by repulsive interactions 392 

with the less proximate, negatively charged amino acids Gal3p-Glu363 and Gal80p-Glu348 393 

(Fig. 6d). Also, the polar solution (water + counter ions) could partially reduce the 394 

stabilization effect of the H352D mutation because residue 352 is better solvated in the 395 

Gal3p* dimer than in the Gal3p*-Gal80p tetramer. Thus, to quantify a possible stabilization 396 

effect of the H352D mutation, we computed the change in the Gibbs free energy difference, 397 

ΔΔGsub = ΔGsub
D352 - ΔGsub

H352, with the aid of the thermodynamic cycle depicted in Fig. 6e. 398 

The actual free energy calculations (see Methods) yielded ΔΔGsub =  -2.8 ± 0.9 kcal/mol, 399 

which indicates that the H352D mutation indeed increases the thermodynamic stability of the 400 

Gal3p*-Gal80p complex with respect to the Gal4p-Gal80p complex. Thus, as predicted by the 401 

dynamic model of network induction, the H352D mutation increases the cellular response by 402 

facilitating the formation of the complex. 403 

  404 

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/140467doi: bioRxiv preprint first posted online May. 20, 2017; 

http://dx.doi.org/10.1101/140467
http://creativecommons.org/licenses/by/4.0/


 19 

DISCUSSION 405 

 406 

We experimentally monitored the induction dynamics of the yeast GAL network in the 407 

context of natural genetic variation at the GAL3 gene. We built a stochastic model of the 408 

network and used it to link GAL3 alleles to functional network parameters. This approach 409 

discriminated alleles that increased the strength of activated Gal3p (e.g. of strains NCYC361 410 

and DBVPG1788) from alleles that desensitized Gal3p to galactose activation (e.g. of strain 411 

YJM978). Alleles showing different glucose/galactose trade-offs at equilibrium displayed 412 

different dynamics of induction, and they were associated to different strength of activated 413 

Gal3p. Our approach also predicted a functional effect of a single non-synonymous SNP that 414 

was validated by atomistic simulations of the binding interface between Gal3p and Gal80p 415 

dimers. These results provide further details on the yeast GAL system and, perhaps more 416 

importantly, they constitute a proof-of-concept of the feasibility and usefulness of linking 417 

genetic variants to model parameters. 418 

 419 

Genetic variability of the yeast GAL network 420 

 421 

Our in vivo and in silico analysis of the induction kinetics of yeast GAL activation 422 

reveals properties of this system and how it is sensitive to genetic variation. Previously, 423 

several computational models of the network have been proposed, usually in an effort to 424 

understand the properties of the system at steady-state11,15,18. Particularly, they highlighted the 425 

important role of Gal3p, Gal1p and Gal80p-mediated feedback loops. Our in silico analysis 426 

suggests that the gradual or binary kinetic response is mainly controlled by the initial number 427 

of repressors (Gal80p) and inducers (Gal1p and Gal3p), the efficacy of galactose to activate 428 

the inducers and the efficiency of the activated inducers to release the effect of repressors. In 429 
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particular, a low mean number of inducers at the time of induction may lead to high cell-to-430 

cell variability in their actual number. Cells with few inducers (as compared to repressors) 431 

display a lag time before responding, leading to a binary response pattern at the population 432 

level. This prediction from our model is fully consistent with recent experiments that tracked 433 

the induction of the network at the single-cell level and showed that the initial concentrations 434 

of Gal1p and Gal3p are predictive of the transient bimodal response25. We also observed that 435 

feedback loops were important to control the strength of cell-to-cell variability before 436 

induction (Gal80-mediated negative feedback) and the duration of lag times (Gal3/Gal1-437 

mediated positive feedbacks), which agrees with the previous observation that disabling the 438 

Gal80p and Gal3p feedback loops can transform a gradual response into a binary one14. Our 439 

results on GAL3 genetic variants also complement previous genetic manipulations of the 440 

feedback loops, where their effect on bimodality was tested by modulating promoter 441 

activities14,15,18,19. Here, we showed that a non-synonymous variant affecting Gal3p:Gal80p 442 

interaction directly affects the dynamics of transient bimodality. This is a novel 443 

experimentally-based observation that is totally coherent with the conclusions of Venturelli et 444 

al. who showed computationally that steady-state bimodality of the network could rely on 445 

protein-protein binding affinities18. 446 

 447 

We also observed that genetic variation at GAL3 could affect its propensity to be 448 

activated by galactose/ATP binding. In particular, the GAL3YJM978 allele was associated with 449 

increased values of the !!"# parameter (more galactose needed for its activation). This allele 450 

harboured 3 non-synonymous SNPs: M179I, R312I and H352D. As shown above, H352D is 451 

found in all natural alleles that we tested and it therefore does not explain a change in !!"# 452 

specifically for GAL3YJM978. According to the structure of the Gal3p:Gal80p tetramer 453 

complexed with galactose and ATP32, the other two polymorphic sites do not map close to the 454 
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pocket containing the ligands. Met179 is located at the surface of the complex, distant from 455 

any binding interface and distant from the bound galactose (30 Å) and ATP (25 Å). The 456 

mutational effect of the rather conservative amino acid change (methionine to isoleucine) on 457 

the !!"# parameter might therefore be negligible. In contrast, the non-conservative arginine to 458 

isoleucine mutation at site 312 could influence !!"# in several ways: first, the positively 459 

charged arginine contributes favorably to the binding of the negatively charged ATP through 460 

long-range electrostatic interactions. The charge-neutral Ile312 variant lacks this favorable 461 

interaction and may have lower affinity for ATP, thereby penalizing activation by the two 462 

ligands. Second, residues Arg312 of the two Gal3p units are in direct contact with each other, 463 

and the non-conservative R312I change may affect the dimerization of Gal3p. Lavy et al.32 464 

reported that, in absence of galactose, Gal3p is monomeric in solution and adopts an open 465 

conformation that differs from the conformation generating the Gal3p:Gal3p dimeric interface 466 

found upon interaction with Gal80p. If the R312I modification alters Gal3p dimerization, this 467 

could modify the overall activation by galactose because these processes are coupled. 468 

 469 

We observed that genetic variation of the strength of activated Gal3p (!!"#!), 470 

estimated from the dynamic properties of network activation, was correlated with variation of 471 

the glucose/galactose trade-off at steady state. This implies that the two traits co-evolve in 472 

natural populations of S. cerevisiae. Given the relatively short time-scale of network 473 

induction, mild differences in the dynamics of activation alone are unlikely to cause fitness 474 

differences unless environmental galactose concentrations are highly dynamic. In contrast, 475 

variation in the sensitivity of the network to the ratio of external sugars corresponds to the 476 

triggering of an adaptive metabolic process, which is highly related to fitness even for slow 477 

environmental changes. The induction dynamics that we observed on short time-scales are 478 
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probably not themselves under selection, but they provide valuable information on the 479 

molecular mechanism affecting a fitness-related trait operating on longer time scales.  480 

 481 

The H352D variant is interesting in this regard. At this position in Gal3p, a histidine 482 

residue was found in all laboratory strains (BY4741, CEN.PK, D273-10B, FL100, FY1679, 483 

JK9-3d, SEY6210, W303, X2180-1A, YPH499), while nearly all natural isolates as well as 484 

distant species possess an aspartic acid. Our results showed the importance of this aspartic 485 

acid for interaction with Gal80p, which suggests that its conservation in wild population 486 

results from purifying selection. The presence of slightly-deleterious mutations in laboratory 487 

strains is well-known. Examples from the reference strain BY/S288c include mutations in 488 

AMN1 37, BUL2 38, ERC1 39,  FLO8 40, GPA1 37 and HAP1 41. These mutations likely resulted 489 

from a release of purifying selection caused by strong population bottlenecks when 490 

propagating yeast on petri dishes. As for the genes listed above, the implication for GAL3 is 491 

that most mechanistic studies refer to a "Wild-Type" protein that is in fact a slightly-492 

hypomorphic allele not found in nature. 493 

 494 

We also noted cases where the specificities of a GAL3 allele in the context of the BY 495 

strain did not reflect the properties of the donor strain. An extreme example of this was the 496 

GAL3DBVPG1853 allele which improved the response of the BY strain (Fig. 1d) while the 497 

DBVPG1853 strain itself did not respond at all to galactose (not shown), presumably because 498 

of genetic defects in other genes. Background-specific effects are common and should be 499 

taken into account when interpreting the functional impact of natural alleles in their original 500 

strain context42. 501 

 502 

Linking DNA variants to model parameters: feasibility and potential 503 

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/140467doi: bioRxiv preprint first posted online May. 20, 2017; 

http://dx.doi.org/10.1101/140467
http://creativecommons.org/licenses/by/4.0/


 23 

 504 

We developed our approach using a model system, the yeast GAL network, which was 505 

an ideal context for investigation: molecular players were well known, important network 506 

properties had been previously described, genetic engineering could be used to study the 507 

effect of a single gene in an otherwise isogenic background, and experimental measurements 508 

were relatively cheap. If network modeling had provided no added value in such a context, it 509 

would be hard to imagine how it could be useful in more complex frameworks. We report that 510 

it did: observing different dynamics experimentally was not sufficient to make functional 511 

inferences, but combining data and modeling was. The concept is therefore fruitful and it is 512 

interesting now to consider how it can be extended to other biological systems. 513 

 514 

First, it is important to realize that inference is based on the wealth of information 515 

contained in the dynamics of activation. Evidently, studying the system at equilibrium would 516 

not be sufficient. Mapping DNA variants to model parameters is therefore promising for 517 

systems where time-course data is available.  518 

Second, even in the simple context of our study, not all parameters of the model were 519 

identifiable and it was necessary to aggregate several of them into a meta-parameter (!!"#!). 520 

We admit that this constitutes a limit of the approach: when the H352D SNP was linked to 521 

this meta-parameter, additional assumptions were needed to infer biochemical effects. Similar 522 

difficulties will likely be encountered in other systems and the identifiability and sensitivity 523 

analysis of the model is therefore crucial to determine the nature of biological information 524 

that can be retrieved by the approach. 525 

Third, our method here was to infer function and then to validate a prediction by 526 

exploring the structural data of a protein complex. Depending on the system under 527 

consideration and the data available, it may be judicious to reverse the approach: scanning 528 
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protein structures first in order to identify variants modifying binding affinities and then 529 

studying these variants specifically using experimental measurements and model-fitting. This 530 

way, a parameter change is first inferred from structural data and a dynamic model of the 531 

network then allows one to predict its phenotypic effect. The SAAP database6, which registers 532 

structurally-relevant variants of human proteins, may constitute a very helpful resource to do 533 

this. 534 

Fourth, while we based our approach on cell population distributions, tracking the 535 

response dynamics of individual cells over time is also possible25 and can provide more 536 

information on the network response. In other contexts, such methods had been very useful to 537 

infer parameters associated to individual cells43. A variant may then be associated to one 538 

parameter by a whole distribution of values, which likely carries more information than a 539 

single scalar value as presented here. 540 

Fifth, additional work is now needed to extend the approach to more than one gene. At 541 

the level of an entire network, the overall genotype of the individual is a combination of 542 

alleles. The number of such combinatorial genotypes of the network segregating in natural 543 

populations can be very large and mapping this diversity to the parameter space would be 544 

very interesting. In particular, models accounting for genetic changes might predict and 545 

explain genetic interactions (epistasis) within the network. The challenge to achieve this will 546 

likely reside in the number of free parameters: if the genotype is allowed to vary at too-many 547 

genes, parameters cannot be constrained efficiently. Mapping variants one gene at a time, as 548 

we did here, and then in combination would maintain this necessary constraint while 549 

evaluating epistasis. A more difficult task would be to infer the contribution of genes that are 550 

external to the network while nonetheless affecting its behavior (e.g. by modifying widely 551 

transcription rates or the stability of proteins, or cross-talks with other networks). Studying 552 

these factors by our approach is only possible after they are identified and connected to the 553 
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network. Their identification can be obtained by genetic mapping. For example, we recently 554 

identified a locus on yeast chromosome V that affects the variability of the GAL response at 555 

transient times of activation28. Once identified, these factors must be integrated in the network 556 

model, which may be a complex task. 557 

 558 

Network modeling is expected to help the development of personalized medicine and 559 

the fact that it is possible, in a yeast system, to personalize model parameters according to 560 

DNA variants is encouraging. Can the approach described here be applied to human variants? 561 

This requires overcoming several difficulties that could be avoided in our framework. First, 562 

most regulatory networks of human systems are incompletely known. Second, most of these 563 

networks comprise numerous genes, implying many model parameters and, possibly, too-564 

many degrees of freedom for adjustments and identifiability issues. The first task is therefore 565 

a careful identifiability and sensitivity analysis of the model and, as much as possible, a 566 

reduction of its complexity. The work of Zhao et al.44 is encouraging in this regard. The 567 

authors studied the mitochondrial outer membrane permeabilization network controlling entry 568 

in apoptosis. Their model comprised ~50 parameters and ~20 molecular species, but the 569 

network critical behaviour (bifurcation point) was sensitive to less than half of the parameters. 570 

The authors then searched for enrichment of cancer mutations in protein domains involved in 571 

molecular interactions and they used molecular dynamics simulations to estimate the affinity 572 

changes caused by these mutations. Interestingly, most mutations that were predicted to affect 573 

sensitive parameters of the model caused a significant change of affinity in the expected 574 

direction, illustrating that the model was able to highlight relevant vulnerabilities. Similarly, 575 

Nijhout et al.45 studied a model of the folate-mediated one carbon metabolism system. They 576 

reported that human mutations that strongly perturb enzymatic activities could have little 577 

phenotypic effect if they targeted parameters that are poorly sensitive. Another type of 578 
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difficulties when studying human networks are experimental limitations: manipulating human 579 

cells needs more time and funds than manipulating yeast; replacing alleles of specific genes is 580 

possible via CRISPR/Cas9 editing but the large physical size of human genes as well as the 581 

functional redundancy between paralogues can be problematic; and setting up dynamic 582 

experimental acquisitions is often not straightforward. Thus, applying our approach to a 583 

minimal network in human cells compatible with genetic editing and time-series acquisitions 584 

will probably constitute an important step in the near future. 585 

 586 

  587 
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METHODS 588 

 589 

Yeast strains and plasmids. 590 

The strains used is this study are listed in Table S3. We used the strain BY4711 (GY145, 591 

isogenic to s288c) as BY reference strain. The PGAL1GFP reporter cassette was obtained from 592 

plasmid pGY338 previously described28. pGY338 was linearized by NheI and integrated at 593 

the HIS3 locus of BY4711 to create strains GY1648 and GY1649, two independent 594 

transformants. To replace endogenous GAL3BY allele by natural variants in GY1648 strain, we 595 

PCR amplified the TRP1-GAL3 locus of natural wild isolates using primers 1D28(5'- 596 

AGAGGCGGTGGAGATATTCCTTATG-3') and 1D56(5'-597 

ACGTCCGCTATACCTTCGTTTTCTC-3'). The endogenous locus was then replaced by in 598 

vivo homologous recombination and positive transformants were selected on SD-TRP plates. 599 

GAL3NCYC361, GAL3K11, GAL3Y12, GAL3DBVPG1788, GAL3DBVPG1853, GAL3YJM978, GAL3JAY291 600 

were PCR amplified from NCYC3451, NCYC3452, NCYC3445, NCYC3311, NCYC3313, 601 

NCYC3458 (wild isolates from the Saccaromyces Genome Resequensing Project, SGRP26,46) 602 

and JAY291 (Argueso et al.47), respectively. The strains used to characterize the effect of 603 

natural variants on galactose response were GY1648, GY1689, GY1692, GY1695, GY1698, 604 

GY1704, GY1707 and GY1713, all isogenic to S288c except for GAL3BY, GAL3NCYC361, 605 

GAL3K11, GAL3Y12, GAL3DBVPG1788, GAL3DBVPG1853, GAL3YJM978, GAL3JAY291, respectively. 606 

Strains genotype was verified by PCR and either high-resolution melting curves, restriction 607 

fragment length polymorphism typing or sequencing. The TRP1-GAL3 locus from BY strain 608 

was PCR amplified with primers 1M95 (5'- 609 

tctttcattatgtgagagtttaaaaaccagaaactacatcatcgaaaaagggatccAGAGGCGGTGGAGATATTCCT610 

TATG-3') and 1M96 (5'- 611 

cgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctgACGTCCGCTATACCTTCGTTT612 
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TCTC-3') and cloned into HpaI-linearized plasmid pALREP39 by homologous recombination 613 

in yeast, generating plasmid pGY409. The mutated GAL3BY-H352D allele was synthesized by 614 

GeneScript and subcloned into pGY409 using MscI-BstEII restriction sites, generating 615 

plasmid pGY418.  The TRP1-GAL3BY-H352D locus was PCR-amplified from pGY418 using 616 

primers 1D28 and 1D56 and transformed into GY1649 to create strain GY2009. Genotype 617 

was validated by PCR and sequencing. Strains of figure 5 were MPJ125-E06 (GAL3BY), 618 

MPJ143-H01 (GAL3YJM428), MPJ143-F01 (GAL3YJM421) and MPJ125-A07 (GAL3BC187) which 619 

were described in another study (Lee et al. PLoS Genetics, in press); they all derived from a 620 

S288c hoΔ::GAL1pr-YFP-mTagBFP2-kanMX4; gal3∆::hphNT1 parental strain. 621 

 622 

Galactose response measurements. 623 

Liquid cultures in synthetic medium with 2% raffinose (Yeast Nitrogen Base w/o amino acids 624 

6.7g/L, Raffinose 2%, Dropout Mix 2g/L, adjusted to pH=5.8) were inoculated with a single 625 

colony and incubated overnight, then diluted to OD600 = 0.1 (synthetic medium, 2% 626 

raffinose) and grown for 3 to 6 hours. The galactose induction experiments were carried out in 627 

96-well sterile microplates using a Freedom EVO200 liquid handler (Tecan) equipped with a 628 

96-channel pipetting head (MCA), a high precision 8-channel pipetting arm (LiHa), a robotic 629 

manipulator arm (RoMa) and a MOI-6 incubator (Tecan). All robotic steps were programmed 630 

in Evoware v2.5.4.0 (Tecan). Cells were resuspended in synthetic medium with 2% raffinose 631 

and the appropriate galactose concentration (0.01, 0.1, 0.2 and 0.5%) and grown for the 632 

desired time (from 0 to 250 minutes). Cells were then washed with PBS1X, incubated for 8 633 

min in 2% paraformaldehyde (PFA) at room temperature, followed by 12 min of incubation in 634 

PBS supplemented with Glycine 0.1M at room temperature and finally resuspended in PBS. 635 

They were then analyzed on a FACSCalibur (BD Biosciences) flow cytometer to record 636 
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10,000 cells per sample. Each set of data is representative of the results of two independent 637 

experiments (each comprising 3 technical replicates). 638 

Flow cytometry data was analysed using the flowCore package from Bioconductor48. Cells of 639 

homogeneous size were dynamically gated as follows: (i) removal of events with saturated 640 

signals (FSC, SSC or FL1 = 1023 or = 0), (ii) correction by subtracting the mean(FL1) at t=0 641 

to each FL1 values, (iii) computation of a density kernel of FSC, SSC values to define a 642 

perimeter of peak density containing 60% of events, (iv) cell gating using this perimeter, (v) 643 

removal of samples containing less than 3,000 cells at the end of the procedure and (vi) 644 

correction of the data according to an eventual experimental bias during cytometer 645 

acquisitions. For the twelve time-points (0, 10, 20, 30, 40, 60, 80, 100, 130, 160, 205 and 250 646 

minutes) experimental design, the time course for a given strain was acquired on different 647 

plates on the flow cytometer. In order to correct an eventual plate effect, we systematically 648 

included 24 replicates on each plate acquired on flow cytometer. We then tested the fixed 649 

effect of plates using an ANOVA. The FL1 values of each cell were subsequently corrected 650 

according to the plate offset of the ANOVA. For the six time-points (0, 30, 60, 80, 130 and 651 

210 minutes) experimental design, all the timepoints being acquired on the same experimental 652 

plate, we did not apply the normalization filter. The GFP expression values presented here in 653 

arbitrary units were the FL1 signal of the retained cells (normalized for the plate effect, if 654 

required). 655 

Analysis of flow cytometry distributions. All statistical analysis were done using R (version 656 

3.2.4). 657 

Calculation of the response amplitude. The response amplitude Α was defined as the mean of 658 

PGAL1GFP expression in activated cells. First, for each strain, at each time point, we 659 

determined by eye if the PGAL1GFP distribution was unimodal (!(!!"") = ! !!"",!!"" ) or 660 

bimodal (!(!!"") = !!!"" + !!!" !). If the distribution was unimodal, we calculated: 661 
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Α = !!"". Otherwise, bimodal distributions were considered as mixtures of two normal 662 

distributions, such as: !(!!"") = !!""! !!"",!!"" + !!"! !!",!!" , with Α = !!". We 663 

used the function mixtools::normalmixEM() to calculate Α for mixture distributions.  664 

Calculation of inducibility. Inducibility was defined as the proportion of ON cells in the 665 

population. The threshold t between OFF and ON cells was calculated as follows: i) a subset 666 

of OFF cells (all cells acquired at t=0min) and ON cells (activated cells belonging to 667 

unimodal distributions, acquired at the latest time point of the experiments) was defined for 668 

each experiments , ii) the mean and standard deviation were extracted from each OFF and ON 669 

normal distributions using the function mixtools::normalmixEM(), iii) these 670 

parameters were used to determine t such as ℙ !!" < ! = ℙ(!!"" > !) , with !!" the 671 

observed fluorescence FL1 in ON_cells and !!"" the observed fluorescence FL1 in 672 

OFF_cells, iv) we finally calculated Ι = !"_!"##$ !"!!!
!"_!"##(!"!#$) !for each time point, for each strain.  673 

Stochastic modeling 674 

We model the stochastic gene expression of GAL1, GAL3, GAL80 and of the reporter gene 675 

(under a GAL1 promoter). For each gene we account for the status of the promoter (ON/OFF) 676 

and for the production and degradation of mRNAs and proteins. In addition, for the reporter 677 

gene, we account for the maturation of the fluorescent protein. The promoter switching rate 678 

from ON to OFF for gene i is driven by GAL80p: !!!"" = !!!"" !"#!"!
!!"

! !!
 with ni the 679 

number of strong GAL4p binding sites in the promoter. We assume that GAL80p represses 680 

transcription via its dimerized form (with K80 encompassing the dimer dissociation constant). 681 

The promoter switching rate from OFF to ON is driven by GAL3p and Gal1p: !!!" =682 

!!!" !"#!!∗
!!

!
+ !"#!!∗

!!

! !!
 with !"#$∗ = !"#$ !"# /!!"#

!! !"# /!!"#
 the number of activated 683 

proteins at a given galactose concentration [gal] (Kgal being the galactose dissociation 684 

constant). Here also, we assume that activated Gal3p and Gal1p are mainly found as dimers. 685 
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K1 and K3 encompass the dimer dissociation constants as well as the affinity of activated 686 

Gal3p* for Gal80p. For a detailed description of the model see Supplementary Text 1. Most 687 

of the parameters of the model (except K1, K3, K80 and Kgal) were fixed based on the literature 688 

(see Table S1 in Supplementary Text 1). The model had 7 GAL3-dependent parameters: α3 689 

(leaky transcription rate), γ3 (translation rate), β3 (mRNA degradation rate), µ3 (protein 690 

degradation/dilution rate), Δα3 (full transcription rate), K3 and Kgal. The phenotypic response 691 

of a strain (gradual vs binary) at a given galactose concentration mainly depends on Kgal and 692 

on the strength of GAL3 defined by ρGal3=α3γ3/(β3µ3K3) (see main text and Supplementary 693 

Text 1). For a given set of parameters, the stochastic dynamics of galactose induction was 694 

simulated using the stochastic simulation algorithm from Gillespie33. The system was first 695 

allowed to reach steady-state at [gal]=0. At t=0, galactose is introduced and the parallel -696 

independent - evolution of 5,000 cells is monitored during 250 minutes of real time. 697 

 698 

Parameter inference 699 

For a fixed set of GAL3-independent parameters, predictions for various values of GAL3-700 

dependent parameters ρGal3 and Kgal were performed at 3 different galactose concentrations 701 

(0.05, 0.1 and 0.5%). Parameters were sampled from a 2D logarithmic-grid encompassing the 702 

region of interest. Then, for each strain, a global chi2-score between the experimental data 703 

and the corresponding model predictions integrating the 3 concentrations were minimized to 704 

infer ρGal3 and Kgal. Uncertainties on the parameters reflect the size of the sampling parameter 705 

grid. Parameter inference was repeated 6 times for different values of GAL3-independent 706 

parameters (see Supplementary Text 1). 707 

 708 

Molecular dynamics simulations for free energy calculations were carried out as described 709 

in Supplementary Text 2 and Supplementary Fig. 8. 710 
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 711 

Data availability. All flow cytometry raw data files can be downloaded from 712 

http://flowrepository.org under accession number FR-FCM-ZY6Y. 713 

 714 

 715 
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 860 

 861 

 862 
Figure 1. Dynamic response to galactose in the context of GAL3 variants. Acquisitions 863 
were made on strains where the GAL3 allele was replaced by the indicated natural alleles. 864 
These strains were otherwise isogenic, with a BY background. (a-b) Flow-cytometry data 865 
obtained on strains harboring the GAL3NCYC361 allele (a) or the GAL3Y12 allele (b). Cells were 866 
cultured in raffinose 2% and induced at time 0 by adding galactose at a final concentration of 867 
0.5%. a. u., arbitrary units. Grey dashed line, threshold used to distinguish ON cells from OFF 868 
cells. (c) Amplitude of the response (mean expression) as a function of time for each GAL3 869 
replacements strain. Error bars represent standard error of the mean (n=6). (d) Inducibility of 870 
the response (fraction of ON cells) as a function of time for each GAL3 replacement strain. 871 
Error bars represent standard error of the mean (n=6). 872 
 873 
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 875 
 876 
 877 
 878 
 879 
Figure 2.  In-silico model of network induction. (a) Schematic representation of the model 880 
used. Galactose-activated Gal1p and Gal3p proteins become Gal1p* and Gal3p*, 881 
respectively. Pointed and blunt arrows represent activation and inhibition, respectively. 882 
Positive and negative feedback loops are highlighted by + and - signs. (b) Example of a 883 
gradual response predicted by the model ([gal]=0.5%, ρGal3=140 and KGal=0.055). Thin violet 884 
lines represent stochastic simulations of network activation in individual cells. Dashed red 885 
line represents the threshold distinguishing ON from OFF cells. Green thick line indicates the 886 
fraction of ON cells as a function time. (c) Example of a binary response predicted by the 887 
model ([gal]=0.5%, ρGal3=40 and KGal=0.055). Same color code as in (b). 888 
 889 
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 892 
 893 

 894 
 895 
 896 
 897 
 898 
Figure 3. Strain-specific training of the model and validation.(a) Model fitting. Each panel 899 
corresponds to one strain carrying the indicated GAL3 allele. Inducibility was measured by 900 
flow cytometry (data points +/- s.e.m.) after stimulating cells with three different 901 
concentrations of galactose (points colored according to the concentration). For each strain, 902 
this data was used to fit the GAL3-dependent parameters ρGal3 and KGal. Inferred parameter 903 
values are shown. Lines in plain (resp. dashed and dotted) represent the inducibility predicted 904 
by the model at [gal]=0.5% (resp. 0.1% and 0.05%). (b)With the parameters inferred in (a) 905 
we use the model to predict the inducibility of each strain at a galactose concentration of 0.2% 906 
(lines), and this prediction was compared to experimental measures (dots +/- s.e.m.).   907 
 908 
 909 
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 911 
 912 
 913 
Figure 4. GAL3 alleles map to distinct locations of the parameter space. (a-b) Parameter 914 
values obtained by fitting the model to experimental data collected on five strains at three 915 
concentrations of the inducer ([gal] = 0.05, 0.1 and 0.5%). Six independent fits were 916 
performed (one per grey line). For each one, different values of GAL3-independent 917 
parameters were chosen (see Supplementary Text 1), and parameters ρGal3 (a) and Kgal (b) 918 
were estimated for each strain. Dots represent their value for the indicated strain, relative to 919 
the value estimated for the GAL3BY strain. Error bars: uncertainty on parameter estimation for 920 
each inference (see Materials and Methods). (c) Phenotypic landscape predicted by the model. 921 
At defined concentrations of the inducer ([gal]), the values of ρGal3 and Kgal determine 922 
whether the response is gradual (brown) or binary (yellow). The white zone is an intermediate 923 
region where the distinction between gradual and binary is unclear. Using parameters inferred 924 
in (a) and (b), alleles are mapped to the landscape (colored dots). Error bars: standard 925 
deviation of the 6 distinct estimations. (d) Time-course flow cytometry data of the 926 
GAL3DBVPG1788 strain, showing its transient binary response at low concentration of inducer 927 
(left) and its gradual response at higher concentration (right).  928 
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 929 

 930 
 931 
 932 
 933 
Figure 5. Relationship between inducibility and diauxic shift decision threshold. (a) 934 
Schematic representation of decision threshold measurement. The decision threshold 935 
corresponds to the concentration of glucose at which 50% of the cells are induced in the 936 
presence of 0.25% galactose. The blue curve is theoretical and shown to explain how the 937 
fraction of ON cells depends on glucose concentration. (b) Decision thresholds for strains 938 
GAL3BY, GAL3YJM421, GAL3YJM428 and GAL3BC187 at [gal] = 0.25%. (c) Schematic 939 
representation of GAL3 induction parameters determination. (d) Location of the GAL3 940 
replacement strains in the phenotypic landscape of the model at [gal] = 0.25%. Inset: ρGal3 941 
values as a function of the decision threshold, with dots corresponding to strains. 942 
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 945 

 946 
 947 
 948 
Figure 6. Functional inference of the H352D variant of GAL3. (a). Experimental 949 
acquisitions (dots) and model fitting (curves) of the induction dynamics of the GAL3BY-H352D 950 
strain. (b) GAL3BY (blue dot) and GAL3BY-H352D (grey dot with standard deviation bars) strains 951 
localisation in the phenotypic landscape of the model at [gal]=0.5%. Arrows: phenotypic 952 
trajectory between the two alleles. (c) Structure of the tetrameric complex  953 
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[Gal3p*]2[Gal80p]2 (PDB entry 3V2U). Residue His352 of one Gal3p unit is in the back side 954 
and not visible. The His352 residue of the other Gal3p unit is shown as green beads in the 955 
center; it is located at the binding interface of the Gal3p* dimer (white beads) and the Gal80p 956 
dimer (colored surface). Gal80p residues are colored according to their electrostatic surface 957 
potential from red (≤ -10 kT/e) to blue (≥+10 kT/e). Yellow beads: the acidic activation 958 
domain of Gal4p was inserted in the complex by superimposition with crystal structure 3BTS. 959 
A similar insertion in the other Gal80p unit is in the back side and not visible. Created with 960 
VMD software. (d) Local stabilization of Gal3p-Asp352 by residues Gal3p-Arg362 and 961 
Gal80p-Lys287 in the [Gal3]2[Gal80]2 complex. Green and white labels refer to residues from 962 
Gal3p and Gal80p units, respectively. The figure shows a snapshot from a molecular 963 
dynamics simulation of the mutation H352D carried out for a model system of the complex 964 
(see Supplementary Text 2). Atoms within 15 Å of residue 352 are shown as thin sticks in 965 
white (Gal3p) or dark grey (Gal80p). Remaining atoms are shown as a solid surface. Created 966 
with VMD software. (e) Thermodynamic cycle quantifying the energetic impact of the 967 
H352D mutation on the substitution of [Gal4p]2 by [Gal3p]2 as binding partner of [Gal80p]2 968 
(ΔGsub , horizontal arrows). This impact is measured as ΔΔG = ΔGsub

D352 - ΔGsub
H352, which 969 

equals to ΔGalchem
tetramer- ΔGalchem

dimer (vertical arrows) because free enthalpy is a state 970 
function. These latter quantities correspond to the free enthalpy change for the alchemical 971 
(double) mutation of His>Asp in the Gal3p-Gal80p tetramer and in the Gal3p dimer, 972 
respectively, which were computed by alchemical free energy calculations (see 973 
Supplementary Text 2). 974 
 975 
 976 
  977 
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Supplementary Figure 1. Sequences of natural GAL3 locus used in this study. (a) 978 
Nucleotidic sequences of GAL3 promoters. (b) Amino-acid sequences of Gal3p proteins. 979 
Alignment was performed using T-Coffee and visualized using Boxshade. 980 
 981 
Supplementary Figure 2. The lagging time in binary system depends on the initial 982 
activation force.  983 
For the same parameters as in Fig.2c, from each single-cell trajectory, we estimate the lagging 984 
time before single-cell reaches the threshold distinguishing ON from OFF cells (dashed line 985 
in Fig.2c). For 1000 simulated trajectories, we plot it as a function of the initial activation 986 
force defined as the value of the OFF to ON switching rate of GAL promoters !!!" just at the 987 
moment of induction. This parameter depends on the initial number of Gal1p and Gal3p and 988 
on the effective constants K1 and K3 (see Materials and Methods and Supplementary Text 1). 989 
The Spearman correlation between lagging time and initial activation force is -0.75. 990 
 991 
Supplementary Figure 3. Effect of ρGal1 , ρGal3  and ρGal80 values on network inducibility. 992 
Each panel shows the induction of the network as a function of time for different values of 993 
ρGal3 (colored lines) in a specific context of ρGal1 and ρGal80 values. Galactose concentration 994 
and Kgal were fixed to [gal] = 0.5% and Kgal = 0.055%. 995 
 996 
Supplementary Figure 4. Inducibility predictions depend on ρGal1 , ρGal3  and ρGal80 meta-997 
parameters rather than on their constituent parameters. Each panel represents model 998 
predictions of inducibility as a function of time after induction at the indicated galactose 999 
concentration. Colors correspond to different sets of parameter values in the model, blue 1000 
(reference) referring to values of Table S1 completed with K1=0.35, K3=1.26, K80=1.03 and 1001 
Kgal=0.055%. (a) Parameters constituting ρGal1 (formula ρGal1=α1γ1/(β1µ1K1) ) were changed in 1002 
a way that kept ρGal1 invariant. For example, K1 was divided by 2 and β1 was doubled (red). 1003 
(b-c) Same analysis but where constituents of ρGal3 (b) or ρGal80  (c) were changed (similar 1004 
formula). (d) Same analysis as in b but at lower galactose concentration. All simulations were 1005 
run with ρGal1=100, ρGal3=100 and ρGa80=250. 1006 
 1007 
Supplementary Figure 5. The network behaviour depends on galactose concentration 1008 
and on two model parameters. Predictions of the model for the inducibility as a function of 1009 
time at 5 different galactose concentrations for different values of the GAL3-dependent 1010 
parameters ρGal3 and KGal. GAL3-independent parameters were fixed (Table S1) with 1011 
ρGal1=100 and ρGal80=250 (see main text and Supplementary Text 1 for parameter definitions). 1012 
 1013 
Supplementary Figure 6. Inference of GAL3-dependent model parameters for 1014 
GAL3NCYC361 and GAL3DBVPG1788. Experimentally-measured inducibility of GAL3NCYC361 and 1015 
GAL3DBVPG1788 strains, as a function of time, at 3 different galactose concentrations (symbols 1016 
coloured according to the concentration). These data were used to fit the GAL3-dependent 1017 
parameters ρGal3 and KGal. Full lines (resp. dashed and dotted lines) represent the behaviours 1018 
predicted by the model at [gal]=0.5% (resp. 0.1% and 0.05%). 1019 
 1020 
Supplementary Figure 7. Inference of GAL3-dependent model parameters for alleles 1021 
tested in diauxic shift experiments. Experimentally-measured inducibility of GAL3BY, 1022 
GAL3YJM421, GAL3YJM428 and GAL3BC187 strains, as a function of time, at 3 different galactose 1023 
concentrations (symbols coloured according to the concentration). These data were used to fit 1024 
the GAL3-dependent parameters ρGal3 and KGal. Full lines (resp. dashed and dotted lines) 1025 
represent the behaviours predicted by the model at [gal]=0.5% (resp. 0.1% and 0.05%). 1026 
 1027 
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Supplementary Figure 8. Alchemical free energy calculations. A) Model system for the 1028 
Gal3p*-Gal80p tetramer used for the alchemical free energy calculations. Residue 352 (of 1029 
Gal3p*) in the center is shown in colored beads (only one of two possible residues is seen in 1030 
the chosen orientation). Residues within 15 Å of the two residues 352 were allowed to move 1031 
freely; they are shown as thin sticks in white (Gal3p*) or grey (Gal80p). Residues that were 1032 
harmonically restrained are shown as solid surface. This protein substructure was solvated in 1033 
a cubic box (side length = 90 Å) of water molecules (transparent blueish cube) and salt (blue 1034 
and yellow dots) with an ionic strength of 0.15 M. B) Block analysis of the alchemical free 1035 
energy calculations. ΔGalchemical corresponds to the free energy change for transforming 2 x 1036 
Gal3p*-Asp352 to 2 x Gal3p*-His352. (i.e., changing the coupling parameter λ from 1 to 0, 1037 
see Supplementary Text 2). ΔGalchemical for the Gal3p* dimer (grey squares) and the Gal3p*-1038 
Gal80p tetramer (black circles) is plotted for consecutive blocks of 100 ps of sampling. The 1039 
horizontal dashed lines indicate the mean values. 1040 
 1041 
 1042 
Table S1. Description and values of model parameters used in this study (in 1043 
Supplementary Text 1) 1044 
 1045 
Table S2. Growth rates of GAL3 allele-replacement strains (in Supplementary Text 1) 1046 
 1047 
Table S3. Strains used in this study. 1048 
 1049 
Supplementary Text 1. Model description and analysis 1050 
 1051 
Supplementary Text 2. Methods for molecular dynamics simulations 1052 
 1053 

 1054 
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