
Tomographic Image Reconstruction Using Few Projections

Tomographic Image Reconstruction Using Few
Projections

A Review on CS and Numerical Algorithms

Han WANG

CEA-LID/Thalès

2 février 2009

Han WANG Tomographic Image Reconstruction Using Few Projections



Tomographic Image Reconstruction Using Few Projections

Introduction

Overview of Reconstruction Problem

Beer-Lambert’s law :

m(X) = N0 exp(−(AX)) (1)

Physical model(Sampling under Poisson law) :

Y ∼ P(m(X)) (2)

B = logN0 − log Y (3)

MAP Estimation :

min
x
− log P(y|x)− log P(x) (4)
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Introduction

Approximation & Choice of prior

High dose + Edge-preservation reconstruction :

Approximation of − log P(y|x) by quadratic term

Choice of regularization prior TV (x)

min
x

1
2
‖Ax− b‖22 + λTV (x) (5)

Constrainted optimization formulation :

min
x
TV (x) s.t. ‖Ax− b‖22 ≤ ε

2 (6)

Good reconstruction quality observed with small number of
projections for sparse object.
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Introduction

Sparsity Prior

TV semi-norm prompts ”cartoon-like” object :

TV (x) :=
∑
k

|∇xk| (7)

TV (x) :=
∑
k

√
|∂xxk|2 + |∂yxk|2 (8)

Sparsifying transform : basis, frames(redundant basis), or
sub-basis.

Natural basis : Spikes

TV : Sharp edges/Time-sparsity

DCT : Periodic smooth

Wavelet : Texture...
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Introduction

Sparsifying transform : Analysis vs. Synthesis

Analysis. For invertible transform(basis) :

x = Dα⇔ D−1x = α (9)

Synthesis. For non invertible transform(frame, sub-basis) :

x = Dα (10)

Transformed coefficients α are :

S-sparse : only S non zero terms

approximatively sparse : rapide decreasing rate → sparse
approximation error
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Motivation

Medical objects are often sparse :

Blood vessels : natural basis

Tissues : wavelet

Organs/Bones : TV

...

Medical measurements are expensive to take :

X-ray : dose

MRI : time

Taking advantage of sparsity to reduce measurements ?
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Find the sparse solution(s)

Measurement matrix A (Radon transform) is underdetermined.

MSE solution (ART, FBP)

min
x
‖x‖22 s.t. Ax = b⇔ x∗ = A†b (11)

Sparest solution

min
x
N(x) s.t. Ax = b (12)

Sparsity measure N(x) :

Natural : ‖x‖0 := # {k : xk 6= 0}
Nonconvex lp norm : ‖x‖pp :=

∑
k|xk|p, for 0 < p < 1

Convex l1 norm : ‖x‖1 :=
∑

k|xk|
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Why use lp(0 ≤ p ≤ 1) norm as sparsity measure ?

Theorem (Decreasing rate of R-sphere vector)

Given x ∈ IRN , with ‖x‖p = R, and |x1| ≥ |x2|... ≥ |xN |, then

|xk| ≤ Rk−1/p

High dimension ball is almost empty.
lp(p ≤ 1) ball is near the axis.
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Sparse reconstruction with lp norm

The true object x is (app.) sparse under sparsifying transform :

min
α
‖α‖pp s.t. Dα = x (13)

Applied to sensing matrix A :

min
α
‖α‖pp s.t. ADα = b (14)

Noisy case :

min
α
‖α‖pp s.t. ‖ADα− b‖22 ≤ ε

2 (15)

A,D are generally underdetermined.
Reconstruction : x∗ = Dα∗
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Reconstruction error & choice of lp norm

Reconstruction error ‖x− x∗‖2 depends on :

Uniqueness of sparse representation : Sparsifying transform D

Dimension of solution space : Measurement matrix A

Observation noise ε = b−Ax
Choice of lp-norm(0 ≤ p ≤ 1) :

Sparsity or approximatively sparsity

Solution uniqueness condition : local optimum for p < 1
Efficient numerical algorithm
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Compressed Sensing

l1 theory

Idea of CS

To recovery a S-sparse signal x with underdetermined sensing
matrix A :

P0 problem(NP-hard) : minx ‖x‖0 s.t. Ax = b

P1 problem(convex) : minx ‖x‖1 s.t. Ax = b

Equivalence of P0 and P1 ?

Definition (Restricted Isometry Property)

RIP of A is the smallest δS > 0 s.t. for all S-sparse signal x :

(1− δS)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δS)‖x‖22 (16)

i.e., all S-submatrix of A is a ”restricted” isometry.
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Compressed Sensing

l1 theory

P0 and P1 equivalence

Theorem (Perfect reconstruction)

Given that 2S-RIP of A is δ2S ≤
√

2− 1, for a S-sparse true signal
x, P1 solution x∗ is exactly x.

Theorem (Almost Perfect reconstruction)

Given that 2S-RIP of Φ is δ2S ≤
√

2− 1, for a general true signal
x, P1 solution x∗ obeys :

‖x∗ − x‖1 ≤ C‖x− xS‖1 and

‖x∗ − x‖2 ≤ C
‖x− xS‖1√

S

where xS = (x1, x2, ..xS , 0..) is the S biggest term approximation
of x.
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Compressed Sensing

l1 theory

Robustess

For noisy observation b = Ax+ ε :

min
x
‖x‖1 s.t. ‖Ax− b‖2 ≤ ε (NP1)

Theorem (Robust reconstruction)

Under the same hypothesis, the solution x∗ to (NP1 ) obeys :

‖x∗ − x‖2 ≤ C1ε+ C2
‖x− xS‖1√

S
(17)
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Compressed Sensing

l1 theory

Random matrices

Sensing matrices A satisfy RIP with probability 1−O(e−N ) :

Gaussian matrix : S ≤ C.K/ log(N/K)
Binary matrix : P(Ai,j = ±1/

√
K) = 0.5

Fourier matrix : S ≤ C.K/ logN (conjectured)

K randomly choosed observations can measure the essential
part of x !
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Compressed Sensing

lp theory

P0 and Pp equivalence

Pp problem :
min
x
‖x‖pp s.t. Ax = b (18)

Theorem (Pp robust reconstruction)

Given that following holds for some k > 1, and kS ∈ ZZ+ :

δkS + k2/p−1δ(k+1)S < k2/p−1 − 1 (19)

Then for arbitrary true signal x, the solution x∗ to Pp obeys :

‖x∗ − x‖p2 ≤ C1ε
p + C2

‖x− xS‖pp
S1−p/2 (20)

Particularly, one gets P1 results for k = 3 and p = 1.
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Compressed Sensing

Reconstruction Example

Sparse reconstruction with TV
For partial Fourier measurement A, TV regularization equals to :

min
α
‖α‖1 s.t. Aα = b′, with α = ∇x (21)

Fig.: P1 reconstruction with 18 projections 15 projections and 13
projections. For the left one, Pp reconstruction with p = 0.5 achieves the
same result using only 10 projections.
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Compressed Sensing

Problems & variant models

For general model :

min
α
‖α‖pp s.t. ADα = b (22)

RIP property of sensing matrix A could be violated since :

D is deterministic sparsifying transform

Unique sparse representation doesn’t imply unique sparse
reconstruction

Analysis model(example) :

min
x
TV (x) + λ‖F x‖1 s.t. Ax = b (23)

No theoretical estimation available for the reconstruction error ?
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Sparse Representation

Sparsifying transform

A dictionary D = [d1...dM ] of (CN satisfies :

‖dm‖2 = 1, and Span(D) = (CN (24)

Find the sparest representation(s) when dictionary is
redundant(M > N) :

P0 : minα ‖α‖0 s.t. Dα = x

P1 : minα ‖α‖1 s.t. Dα = x

Equivalence : the same unique solution α∗.
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Sparse Representation

P0 and P1 equivalence

Mutual Coherence of a dictionary :

µ(D) 4= max
i 6=j
|〈di, dj〉| (25)

P0 P1 equivalence conditions :

General dictionary : ‖x‖0 <
(
1 + µ(D)−1

)
/2

Union of 2 orthonormal bases : ‖x‖0 < (
√

2− 0.5)µ(D)−1

Union of L orthonormal bases :

‖x‖0 <
(√

2− 1 +
1

2(L− 1)

)
µ(D)−1
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Sparse Representation

Incoherence between measurement and representation

RIP property remains true for general model :

min
α
‖α‖1 s.t. ADα = b (26)

with overwhelming probability if :

K ≥ µ(A,D)2CS(logN)4 (27)

where µ(A,D) := maxi,j |〈ai, dj〉|.

Design the dictionary D to be incoherent with A.
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Numerical Algorithms

Robust P1 problem

Robust P1 problem

Robust P1 problem :

min ‖x‖1 s.t. ‖Ax− b‖22 ≤ ε
2 (NP1)

Equivalent formulation(Lagrangian Relaxation) :

min
x

λ‖x‖1 +
1
2
‖Ax− b‖22 (Qλ)

LR is easier to solve than P1 .
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Numerical Algorithms

Robust P1 problem

Gradient Projection Sparse Reconstruction(GPSR)

LR can be reformulated to

min
z≥0

1
2
z∗Bz + c∗z (BCQP)

with

z =
[
x+

x−

]
, c =

[
λ+A∗b
λ−A∗b

]
and B =

[
A∗A −A∗A
−A∗A A∗A

]
(28)

Efficiently resolved (BCQP) by the general Gradient Projection
method.
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Numerical Algorithms

P1 problem

Direct solution : Linear Programming

P1 can be transformed into Linear Programming :

min
∑
k

(x+
k + x−k ) s.t. A(x+ − x−) = b, and x+, x− ≥ 0 (29)

then solved by :

Simplex method

Interior Point method

Generally slow when A is

large scale

dense

submatrix of fast orthonormal transform(DFT, Wavelet).
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Numerical Algorithms

P1 problem

Indirect solution
General convex optimization problem :

min
x
J(x) +H(x) (B0)

data fitting term : H(x) = ‖Ax− b‖22/2
regularization term : J(x) = λ‖x‖1

Bregman relaxation :

x∗ = arg min
x

Bp
J(x, x′) +H(x) (B1)

with Bregman distance :

Bp
J(u, v) = J(u)− J(v)− 〈p, u− v〉 , p ∈ ∂J(v) (30)
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Numerical Algorithms

P1 problem

Bregman Iterative Regularization

Idea of BIR :

x∗ solves (B1) ⇔ 0 ∈ ∂{Bp
J(x, x′) +H(x)}

which gives :
p−∇H(x∗) ∈ ∂J(x∗)

Bregman Iterative Regularization :

1: Initialization : k = 0, p0 = 0, x0 = 0
2: while Not converged do
3: xk+1 ← arg minxB

pk
J (x, xk) +H(x)

4: pk+1 ← pk −∇H(xk+1) ∈ ∂J(xk+1)
5: k ← k + 1
6: end while

Convergence guaranteed in Bregman distance.
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Numerical Algorithms

P1 problem

Bregman Iterative Regularization

At step k, minxB
pk
J (x, xk) + 1

2 ‖Ax− b‖
2
2 is equivalent to :

min
x
J(x) +

1
2
‖Ax− bk+1‖22 , with bk+1 = b+ bk −Axk (31)

which can be efficiently solved by GPSR.

1: Initialization : k = 0, b0 = 0, x0 = 0
2: while Not converged do
3: bk+1 ← b+ bk −Axk
4: xk+1 ← arg minx J(x) + ‖Ax− bk+1‖22 /2
5: k ← k + 1
6: end while

In finite steps, xk converges to the true solution of P1 .
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Conclusion

Conclusion

Sparse reconstruction works thanks :

Sparse representation of object in (redundant)dictionary

Efficient numerical algorithms

Sensing matrix A well-behaved

Challenges :

Tomography projector A : Polar Fourier Transform

Numerical methods non predicted by theoretical analysis

Bridging the representation and reconstruction problems
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