Calibrage automatique d'un scanner cone-beam en vu d'une reconstruction par l'algorithme FDK

Catherine Mennessier Rolf Clackdoyle

ToRIID le 2/2/2009

<u>Objectif:</u>

- calibrage automatique des paramètres géométriques d'un scanner cone-beam tels que les paramètres soient au format approprié pour l'algorithme FDK.
- estimation analytique des paramètres en fonction des données (≠ méthodes itératives).
- aucune hypothèse sur le type de trajectoire (calibrage indépendant pour chaque position du système).

<u>Plan</u>

- 2. Définition du problème
- 3. Rappels des principes généraux des méthodes de calibrage
- 4. Méthode proposée pour l'estimation des paramètres
 - Définition de la mire
 - Mise en correspondance
 - Système à résoudre
 - Estimation des paramètres
- 5. Quelques résultats par simulation numérique
- 6. Reconstruction FDK
 - 1. Estimation des paramètres dans un autre référentiel
 - 2. Exemple de résultats d'une reconstruction FDK à partir du calibrage

1. Définition du problème

Fig1: paramètres géométriques du scanner.

2. Rappels sur les principes généraux des méthodes de calibrage

- Définition d'une mire 3D (un objet 3D de caractéristiques connus)
- Acquisition de sa projection
- Mise en correspondance de points 3D avec leur projections (r₁,u₁,v₁), (r₂,u₂,v₂), …
- Définition d'un système d'équations dépendant des paramètres cherchés et des mesures sous la forme

$$S(s_{x},s_{y},s_{z},u_{p},...;(\mathbf{r}_{1},u_{1},v_{1}))=0 \quad (2 \text{ equ.})$$

$$S(s_{x},s_{y},s_{z},u_{p},...;(\mathbf{r}_{2},u_{2},v_{2}))=0 \quad (2 \text{ equ.})$$

$$\vdots \quad (2 \text{ equ.})$$
9 inconnues connus

5. Résolution de S pour estimer s_x, s_y, s_z, u_p ...

3. Méthode proposée: définition de la mire

<u>Préambule</u>: on s'intéresse, dans cet exposé, aux trajectoires presque planaires

Mire constituée de 6 billes:

0.5

-0.5

0.5

0

-0.5

-1 -1

- 2 billes/axe, symétriques/origine (Fig3)
- rotation de la mire \Rightarrow pas de chevauchement des projections des billes

Le repère du laboratoire sera lié à la mire

Fig3: définition de la mire. Sa rotation permet d'éviter le chevauchement des projections des billes.

0.5

0

-0.5

3. Méthode proposée: mise en correspondance, choix de points

- On utilise des billes de **densités différentes**. Leur projection apparait donc plus ou moins sombre sur les radiographies.
- On prend comme estimateur de la projection du centre des billes, le barycentre pondéré (par le niveau de gris) des ellipses.

Fig4: une projection de la mire.

Après mise en correspondance bille/ellipse, on ne s'intéresse qu'aux centres des billes et à leur centres projetés (estimés via les barycentres).

3. Méthode proposée: système à résoudre

$$\begin{bmatrix} \tilde{u}(\mathbf{r}) = u_{p} + f \frac{(\mathbf{r} - \mathbf{s}).\hat{\mathbf{u}}}{(\mathbf{r} - \mathbf{s}).\hat{\mathbf{n}}} \\ \tilde{v}(\mathbf{r}) = v_{p} + f \frac{(\mathbf{r} - \mathbf{s}).\hat{\mathbf{v}}}{(\mathbf{r} - \mathbf{s}).\hat{\mathbf{n}}} \\ \tilde{v}(\mathbf{r}) = v_{p} + f \frac{(\mathbf{r} - \mathbf{s}).\hat{\mathbf{v}}}{(\mathbf{r} - \mathbf{s}).\hat{\mathbf{n}}} \end{bmatrix} = \begin{bmatrix} \tilde{u}(\mathbf{r}) - u_{c} = \frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{c} \cdot \mathbf{r} + \mathbf{1}} \\ \tilde{v}(\mathbf{r}) - v_{c} = \frac{\mathbf{b} \cdot \mathbf{r}}{\mathbf{c} \cdot \mathbf{r} + \mathbf{1}} \\ \tilde{v}(\mathbf{r}) - v_{c} = \frac{\mathbf{b} \cdot \mathbf{r}}{\mathbf{c} \cdot \mathbf{r} + \mathbf{1}} \end{bmatrix} \text{ avec} \begin{bmatrix} \mathbf{a} = \frac{(u_{p} - u_{c})\hat{\mathbf{n}} + f\hat{\mathbf{u}}}{-\hat{\mathbf{n}}.\mathbf{s}} \\ \mathbf{b} = \frac{(v_{p} - v_{c})\hat{\mathbf{n}} + f\hat{\mathbf{v}}}{-\hat{\mathbf{n}}.\mathbf{s}} \end{bmatrix} \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(1.0,0)}{(10.0,50)(0.0,1)} = 20 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}{(10.0,50)(0.0,1)} = 0 \\ \tilde{v} = 0 + 100 \frac{(10.0,50)(0.0,1)}$$

3. Méthode proposée: estimation des 9 paramètres

1. Estimation des vecteurs (a, b, c) via équation (1)

$$r_{1} = (k,0,0), r_{2} = (-k,0,0) \Rightarrow$$

$$u_{1} = \frac{k a_{x}}{k c_{x} + 1}; u_{2} = \frac{k a_{x}}{k c_{x} - 1} \qquad a_{x} = \frac{2u_{1}u_{2}}{k(u_{2} - u_{1})}; b_{x} = ..;$$

$$v_{1} = \frac{k b_{x}}{k c_{x} + 1}; v_{2} = \frac{k b_{x}}{k c_{x} - 1} \qquad \Rightarrow \qquad c_{x} = \frac{u_{1} + u_{2}}{k(u_{2} - u_{1})}$$

2. Estimation des 9 paramètres à partir de (a, b, c) via équation (2)

$$\begin{split} \mathbf{u} &= \varepsilon \frac{\mathbf{b} \times \mathbf{c}}{\|\mathbf{b} \times \mathbf{c}\|} \quad \mathbf{v} = -\varepsilon \frac{\mathbf{a} \times \mathbf{c}}{\|\mathbf{a} \times \mathbf{c}\|} \quad \mathbf{n} = -\varepsilon \ \mathbf{s}_{p} \frac{\mathbf{c}}{\|\mathbf{c}\|}, \\ & \mathbf{f} = \frac{\|\mathbf{a} \times \mathbf{c}\| + \|\mathbf{b} \times \mathbf{c}\|}{2\|\mathbf{c}\|^{2}} \quad (\mathbf{u}_{p}, \mathbf{v}_{p}) = \frac{(\mathbf{a} \cdot \mathbf{c}, \mathbf{b} \cdot \mathbf{c})}{2\|\mathbf{c}\|^{2}} + (\mathbf{u}_{c}, \mathbf{v}_{c}), \\ & \mathbf{s} = \frac{\mathbf{s}_{p}}{\|\mathbf{c}\|} (\frac{\mathbf{a} \times \mathbf{c}}{\|\mathbf{a} \times \mathbf{c}\|} \mathbf{u} + \frac{\mathbf{b} \times \mathbf{c}}{\|\mathbf{b} \times \mathbf{c}\|} \mathbf{v} - \varepsilon \mathbf{n}) \qquad \qquad \text{avec } \varepsilon = -\mathbf{s}_{p} \text{sgn}(\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}) \text{ et } \\ & \mathbf{s}_{p} = \{1 \text{ si pinhole et -1 si cone - beam}\}. \end{split}$$

Paramètres de la simulation:

- détecteur: 512*512 pixels
- résolution 0.5mm/pixel
- focale 450mm
- rayon de la trajectoire 300mm
- 180 projections
- k≈70mm

Fig5: estimation de la **source** (g); erreur sur l'estimation (d).

Fig6: estimation des angles d'Euler (g); erreur sur l'estimation (d).

Fig8: estimation des paramètres intrinsèques (g); erreur sur l'estimation (d).

4. Reconstruction FDK

- 1. Changement de référentiel
 - Les paramètres sont exprimés dans le repère de la mire, ce qui n'est pas adapté à une reconstruction FDK: le meilleur cercle contenant la trajectoire est estimé; les paramètres sont exprimés dans un nouveau repère adapté.
- 2. Reconstruction FDK
 - Le filtrage est effectué perpendiculaire à l'axe de rotation. Les projections sont supposées angulairement régulièrement espacées.
 - On pourrait prendre en compte les perturbations du système (orientation du détecteur, échantillonnage angulaire irrégulier) lors du filtrage.

Fig9: estimation du meilleur cercle contenant la trajectoire et changement de repère.

4. Reconstruction FDK

Fig10: reconstruction du Shepp Logan: (g) avec vrais paramètres, (c) si système idéal supposé, (d) avec paramètres du calibrage.

5. Conclusion et perspectives

1. Conclusion

- Calibrage automatique pour une trajectoire presque planair
- Reconstruction FDK
- Pour une trajectoire plus générale, il faut augmenter le nombre de billes de la mire du fait des chevauchements

2. Perspectives

 Correction algorithme FDK pour prendre en compte le non alignement du système