

Algebraic and analytic reconstruction methods for dynamic tomography

L. Desbat, S. Rit, R. Clackdoyle, C. Mennessier, E. Promayon and S. Ntalampeki

L. Desbat, E. Promayon and S. Ntalampeki are with TIMC-IMAG, In3S, Medical Faculty, Grenoble University, 38000 Grenoble, France, Laurent.Desbat@imag.fr

- S. Rit is with the LIRIS, Université Lumière Lyon 2, Lyon, France, simon.rit@gmail.com
- R. Clackdoyle and C. Mennessier are with LHC, St Etienne, France. rolf.clackdoyle@univ-st-etienne.fr, mennessier@cpe.fr

Dynamic tomography

3D cone beam transform

 $g_{\mathcal{D}}(t,\vec{\zeta}) \stackrel{\text{def}}{=} \mathcal{D}f(t,\vec{\zeta}) \stackrel{\text{def}}{=} \mathcal{D}_t f(\vec{\zeta}) \stackrel{\text{def}}{=} \int_0^{+\infty} f\left(\vec{a}(t) + l\vec{\zeta}\right) dl$ $\vec{\zeta} \in S^2 \text{ is a unit vector in } \mathbb{R}^3$ $\text{time } t \in T \subset \mathbb{R}$ $\vec{a}(t) \in \mathbb{R}^3 \text{ is the x-ray source position}$

a time dependent deformation model Γ_t In dynamic CT, the attenuation f is a function of t=> We assume $f_{\vec{\Gamma}_t}(\vec{x}) = f\left(\vec{\Gamma}_t(\vec{x})\right)$ $\vec{\Gamma}_t$ are known bijective smooth functions on \mathbb{R}^3

2

 $\vec{a}(t)$

Analytic dynamic reconstruction

Analytic compensation of Δ_t

$$\mathcal{D}_{t}f(\vec{\zeta}) = c_{t,\vec{\Gamma}_{S^{2},t}^{-1}(\vec{\zeta})} \mathcal{D}_{t}f_{\vec{\Delta}_{t}}(\vec{\Gamma}_{S^{2},t}^{-1}(\vec{\zeta}))$$

Thus $\mathcal{D}_{t}f_{\vec{T}_{\vec{v}(t)}}(\vec{\zeta}) = c_{t,\vec{\Gamma}_{S^{2},t}^{-1}(\vec{\zeta})} \mathcal{D}_{t}f_{\vec{T}_{\vec{v}(t)}\circ\vec{\Delta}_{t}}(\vec{\Gamma}_{S^{2},t}^{-1}(\vec{\zeta}))$

As
$$\mathcal{D}_t f_{\vec{T}_{\vec{v}(t)}}(\vec{\zeta}) = \int_0^{+\infty} f\left(\vec{a}(t) + \vec{v}(t) + l\vec{\zeta}\right) dl$$

$$= \int_0^{+\infty} f\left(\vec{\Gamma}_t\left(\vec{a}(t)\right) + l\vec{\zeta}\right) dl.$$

The reconstruction of *f* from $\mathcal{D}_t f_{\vec{T}_{\vec{v}(t)}}(\vec{\zeta})$ is just the reconstruction on the virtual trajectory $\vec{\Gamma}_t(\vec{a}(t))$

Algebraic reconstruction

Let
$$(e_j)_{j \in J}$$
 be a set of basis functions $e_j : \mathbb{R}^3 \to \mathbb{R}$
 $f(\vec{x}) = \sum_{i \in J} f_j e_j(\vec{x})$ where $f_j \in \mathbb{R}, j \in J$
 $d_i = \int_{\Omega} h_i(\vec{x}) f(\vec{x}) d\vec{x}, i \in I$

where $(d_i)_{i \in I}$ is the real vector of acquired data $h_i(\vec{x})$ could be the dirac on a line $\delta(\vec{x} \cdot \vec{\theta}_i - s_i)$

could be the indicator of the conical region joining the source to the detector

$$d_{i} = \int_{\Omega} h_{i}(\vec{x}) f(\vec{x}) d\vec{x} = \int_{\Omega} h_{i}(\vec{x}) \sum_{j \in J} f_{j} e_{j}(\vec{x}) d\vec{x}$$
$$= \sum_{j \in J} \left(\int_{\Omega} h_{i}(\vec{x}) e_{j}(\vec{x}) d\vec{x} \right) f_{j}$$
system $\mathbf{d} = \mathbf{A}\mathbf{f}$ $\mathbf{d} = (d_{i})_{i=1,\dots,n_{I}}$ data

linear system $\mathbf{d} = \mathbf{A}\mathbf{f}$ $\mathbf{d} = (d_i)_{i=1,...,n_I}$ data $A_{i,j} = \int_{\Omega} h_i(\vec{x}) e_j(\vec{x}) d\vec{x}$ $\mathbf{f} = (f_j)_{j=1,...,n_J}$ unknown coefficients

Algebraic dynamic reconstruction

Dynamic data d_t

$$f_{x,i} = \int_{\Omega} h_i(\vec{x}) f\left(\vec{\Gamma}_t(\vec{x})\right) d\vec{x}$$
$$= \sum_{j \in J} \left(\int_{\Omega} h_i(\vec{x}) e_j\left(\vec{\Gamma}_t(\vec{x})\right) d\vec{x} \right) f_j$$

Assume their exists
$$(b_k)_{k \in K}$$
, K multi-index set, such that
 $e_j \left(\vec{\Gamma}_t \left(\vec{x} \right) \right) = \sum_{k \in K} \Gamma_{t_{k,j}} b_k(\vec{x})$
Then $d_{t,i} = \sum_{j \in J} \left(\int_{\Omega} h_i(\vec{x}) \sum_{k \in K} \Gamma_{t_{k,j}} b_k(\vec{x}) d\vec{x} \right) f_j$
 $= \sum_{j \in J} \left(\sum_{k \in K} B_{i,k} \Gamma_{t_{k,j}} \right) f_j$ $B_{i,k} = \int_{\Omega} h_i(\vec{x}) b_k(\vec{x}) d\vec{x}$
 $d_{t,i}$ is $d_{t(i_1),i_2}$, where $i = (i_1, i_2)$ $\mathbf{d}_{\mathbf{i_1}} = \mathbf{B}_{\mathbf{i_1}} \Gamma_{\mathbf{t}(\mathbf{i_1})} \mathbf{f}, i_1 = 1, \dots, n_{I_1}$

Numerical experiments

The phantom was obtained from a 4D CT image acquired on a scanner synchronized with a respiratory signal [24]. Motion vector fields were computed by deformable registration between each 3D CT image and the reference (one among the ten 3D CT used). A set of cone-beam projections were computed using a projector taking into account this motion model and the geometry of an existing cone-beam CT scanner (640 projections, 512x512 pixels of 0.52x0.52 cm² at isocenter, source/center distance 1000 mm ; source/detector 1536mm, circular trajectory).

Discussion

- Both algebraic and analytic methods were presented for dynamic tomography
- Algebraic approaches are « slow » but better suited for general deformations
- Next work : application and comparisons on real data

References

- A.H. Andersen and A.C. Kak. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. *Ul*trason Imaging, 6(1):81–94, Jan 1984.
- [2] C. Blondel, G. Malandain, R. Vaillant, and N. Ayache. Reconstruction of coronary arteries from a single rotational X-ray projection sequence. *IEEE Transactions on Medical Imaging*, 25(5):653–663, 2006.
- [3] C. Blondel, R. Vaillant, G. Malandain, and N. Ayache. 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field. *Physics in Medicine and Biology*, 49(11):2197–2208, 2004.
- [4] C.R. Crawford, K.F. King, C.J. Ritchie, and J.D. Godwin. Respiratory compensation in projection imaging using a magnification and displacement model. *IEEE Transactions on Medical Imaging*, 15:327–332, 1996.
- [5] M. Defrise, R. Clack, and D. Townsend. The solution to the 3D image reconstruction problem from 2D parallel projections. J. Opt. Soc. Am. A, 10:869–877, 1993.
- [6] L. Desbat, S. Roux, and P. Grangeat. Compensation de déformations en tomographie dynamique 3D conique. *Traitement du Signal*, 23(6).
- [7] L. Desbat, S. Roux, and P. Grangeat. Compensation of some time dependent deformations in tomography. *IEEE transaction on Medical Imaging*, 26(2):261–269, 2007.
- [8] L.A. Feldkamp, L.C. Davis, and J.W. Kress. Practical cone-beam algorithm. Journal of Optical Society of America A, 1(6):612–619, 1984.
- [9] B. Feng, H.C. Gifford, R.D. Beach, G. Boening, M.A. Gennert, and M.A. King. Use of three-dimensional Gaussian interpolation in the projector/backprojector pair of iterative reconstruction for compensation of known rigid-body motion in SPECT. *IEEE Transactions on Medical Imaging*, 25(7):838–844, Jul 2006.

- [10] E. C. Ford, G. S. Mageras, E. Yorke, and C. C. Ling. Respiratorycorrelated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. *Medical Physics*, 30(1):88–97, January 2003.
- [11] R.R. Fulton, B.F. Hutton, M. Braun, B. Ardekani, and R. Larkin. Use of 3D reconstruction to correct for patient motion in SPECT. *Physics* in Medicine and Biology, 39(3):563–574, Mar 1994.
- [12] M. Grass, R. Manzke, T. Nielsen, P. Koken, R. Proksa, M. Natanzon, and G. Shechter. Helical cardiac cone beam reconstruction using retrospective ECG gating. *Phys. Med. Biol.*, 48:3069–3083, September 2003.
- [13] B.F. Hutton, A.Z. Kyme, Y.H. Lau, D.W. Skerrett, and R.R. Fulton. A hybrid 3-D reconstruction/registration algorithm for correction of head motion in emission tomography. *IEEE Transactions on Nuclear Science*, 49(1):188–194, Feb. 2002.
- [14] A. Katsevich. Analysis of an exact inversion algorithm for spiral cone beam CT. Phys. Med. Biol., 47:2583–98, 2002.
- [15] A. Katsevich. Theoretically exact filtered back-projection type inversion algorithm for spiral CT. SIAM. J. Appl. Math., 62:2012–26, 2002.
- [16] F. Lamare, T. Cresson, J. Savean, C. Cheze Le Rest, A.J. Reader, and D. Visvikis. Respiratory motion correction for PET oncology applications using affine transformation of list mode data. *Physics in Medicine* and Biology, 52(1):121–140, Jan 2007.
- [17] L. Livieratos, L. Stegger, P.M. Bloomfield, K. Schafers, D.L. Bailey, and P.G. Camici. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. *Physics in Medicine* and Biology, 50(14):3313–3322, Jul 2005.

- [18] J.D. Pack and F. Noo. Cone-beam reconstruction using 1d filtering along the projection of m-lines. *Inverse Problems*, 21(3):1105–1120, 2005.
- [19] M. Reyes, G. Malandain, P.M. Koulibaly, and J. Darcourt. Respiratory motion correction in emission tomography imaging. In *Eighth International Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine*, Salt Lake City, USA, 2005.
- [20] M. Reyes, G. Malandain, P.M. Koulibaly, M.A. González Ballester, and J. Darcourt. Respiratory motion correction in emission tomography image reconstruction. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI2005)*, volume 8, pages 369–376, 2005.
- [21] C.J. Ritchie, C.R. Crawford, J.D. Godwin, K.F. King, and Y. Kim. Correction of computed tomography motion artifacts using pixel-specific back-projection. *IEEE Transactions on Medical Imaging*, 15(3):333– 342, 1996.
- [22] S. Roux, L. Desbat, A. Koenig, and P. Grangeat. Exact reconstruction in 2D dynamic CT: compensation of time-dependent affine deformations. *Phys. Med. Biol.*, 49(11):2169–82, June 2004.
- [23] E.Y Sidky and X. Pan. A minimum data FBP-type algorithm for image reconstruction in cone-beam CT. In *Fully 3D image reconstruction in* radiology and medicine proceeding, pages 291–294, Salt Lake City, 2005.
- [24] J. Vandemeulebroucke, D. Sarrut, and P. Clarysse. Point-validated pixel-based breathing thorax model. In *Proceedings of the International Conference on the Use of Computers in Radiation Therapy ICCR*'2007, 2007.

This work was supported by the ANR grant NT05-1_45428, ToRIID.