Introduction

Résolution

Régularisation

Minimisation

Conclusion

_

Méthodes itératives pour la déconvolution aveugle de données multidimensionnelles hétérogènes

Ferréol Soulez

Journées TORIID — 2 mars 2009

Introduction

blèmes inverse

Déconvolution

Déconvolution multidimonsionnalle

Résolution

Régularisation

Minimisation

Conclusion

Récultate

Introduction

Introduction

Déconvolution
Déconvolution

Résolution

Régularisation

Minimisatio

Conclusion

Résultat

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution Déconvolution

Résolution

Régularisation

Minimisatio

Conclusio

Résulta

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution Déconvolution

Résolution

Régularisation

iviinimisatio

Conclusion

Résulta

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution Déconvolution

Résolution

Régularisation

Minimisation

Conclusion

Résultat

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution Déconvolution

Résolution

5/ 1/1/1/1

0

Conclusio

Résulta

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution Déconvolution

Récolution

ricooldion

. rogular loatioi

Willinisauc

Conclusion

Résulta

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution Déconvolution

Résolution

Régularisation

Minimisation

Conclusion

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

Déconvolution
Déconvolution

Résolution

Regularisation

Conclusion

Résultat

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m?

Il peut y avoir beaucoup de paramètres ($e.g. \gtrsim 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Introduction

roblèmes inverse:

Déconvolution

multidimensionnel

Résolution

Dágularicatio

Minimisation

Conclusion

Résultats

$$y = \mathbf{H} \cdot x + e.$$

Introduction

Problèmes inverses

Déconvolution

Déconvolution multidimensionnel

Résolution

Régularisation

Minimisation

Conclusion

Résultat

$$y = \mathbf{H} \cdot \mathbf{x} + \mathbf{e} .$$

Objet

Introduction

Problèmes inverses

Déconvolution
Déconvolution
multidimensionnelle

Résolution

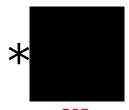
Régularisation

Minimisation

Conclusion

Résultat

$$y = \mathbf{H} \cdot x + e.$$



PSF

Déconvolution

Objet

PSF

+ Bruit

Introduction

Problèmes inverses
Déconvolution

Déconvolution multidimensionnelle

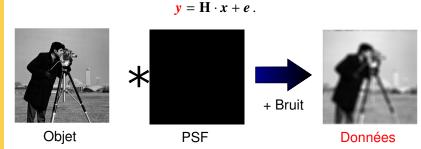
Résolution

Régularisation

Minimisation

Conclusion

Resultat



Formation de données multidimensionnelles

Introduction

Problèmes inverses Déconvolution

Déconvolution multidimensionnelle

Résolution

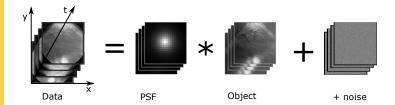
Régularisation

wimimisau

Conclusion

Resultat

Exemple, séquence video (x,z,t):



Introduction

Résolution

MV Approche Maximum posteriori

Déconvolut Aveugle

Régularisation

Minimisation

Conclusion

Résultats

Résolution

Déconvolution : Maximum de vraisemblance

Introduction

Dácolution

Résolution

Approche Maxii posteriori

Déconvolution Aveugle

Regularisation

wiiiiiiisauoi

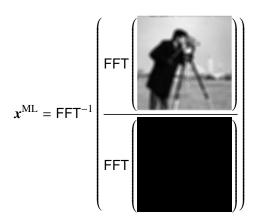
Conclusion

Résultats

La solution au sens du maximum de vraisemblance est identique à l'inversion directe :

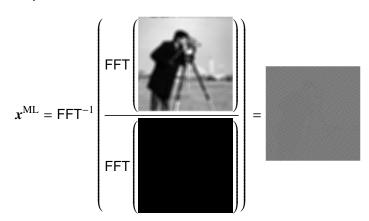
Déconvolution: Maximum de vraisemblance

La solution au sens du maximum de vraisemblance est identique à l'inversion directe :



Déconvolution: Maximum de vraisemblance

La solution au sens du maximum de vraisemblance est identique à l'inversion directe :



Introduction

Résolution

Approche Maximum a

MV

Déconvolution

Aveugle

Régularisation

Conclusion

Dácultata

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x | y)$$

Introduction

Résolution

MV
Approche Maximum a

Déconvolutio

Aveugle

riegularisatio

Conclusion

Résultats

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)}$$
 (théorème de Bayes)

Introduction

Résolution

MV Approche Maximum a

Déconvolutio

Aveugle

riogularioalio

Minimisation

Conclusion

Résultats

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)} \quad \text{(th\'eor\'eme de Bayes)}$$

$$-\log \Pr(x \mid y) = -\log \Pr(y \mid x) - \log \Pr(x) + \log \Pr(y)$$

Introduction

Résolution

MV Approche Maximum a

Déconvolutio Aveugle

Regularisatio

Minimication

Conclusion

Résultats

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)} \quad \text{(th\'eor\'eme de Bayes)}$$

$$-\log \Pr(x \mid y) = -\log \Pr(y \mid x) - \log \Pr(x) + \underline{\log} \Pr(y)$$

Introduction

Résolution

MV Approche Maximum a

Déconvolutio Aveugle

Regularisatio

Canalusia

Résultats

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)} \quad \text{(théorème de Bayes)}$$

$$-\log \Pr(x \mid y) = -\log \Pr(y \mid x) - \log \Pr(x) + \underbrace{\log \Pr(y)}_{x \text{MAP}} = \arg \min_{x} \underbrace{\left\{-\log \Pr(y \mid x) - \log \Pr(x)\right\}}_{x \text{MAP}}$$

Introduction

Résolution

MV Approche Maximum a

Déconvolutio Aveugle

Régularisatio

_

Conclusion

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x | y)$$

$$\Pr(x | y) = \frac{\Pr(y | x) \Pr(x)}{\Pr(y)} \quad \text{(théorème de Bayes)}$$

$$-\log \Pr(x | y) = -\log \Pr(y | x) - \log \Pr(x) + \log \Pr(y)$$

$$x_{\text{MAP}} = \arg \min_{x} \left\{ -\log \Pr(y | x) - \log \Pr(x) \right\}$$

Introduction

Résolution

MV Approche Maximum a

Déconvolution Aveugle

Régularisatio

Conclusion

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)} \quad \text{(théorème de Bayes)}$$

$$-\log \Pr(x \mid y) = -\log \Pr(y \mid x) - \log \Pr(x) + \log \Pr(y)$$

$$x_{\text{MAP}} = \arg \min_{x} \left\{ \underbrace{-\log \Pr(y \mid x)}_{f_{\text{data}}(x)} \underbrace{-\log \Pr(x)}_{f_{\text{prior}}(x)} \right\}$$

Introduction

Résolution

MV Approche Maximum a

Déconvolution Aveugle

Régularisation

Conclusio

Résultats

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)} \quad \text{(théorème de Bayes)}$$

$$-\log \Pr(x \mid y) = -\log \Pr(y \mid x) - \log \Pr(x) + \log \Pr(y)$$

$$x_{\text{MAP}} = \arg \min_{x} \left\{ \underbrace{-\log \Pr(y \mid x)}_{f_{\text{data}}(x)} \underbrace{-\log \Pr(x)}_{f_{\text{prior}}(x)} \right\}$$

$$= \arg \min_{x} f_{\text{post}}(x)$$

Maximum a posteriori

Introduction

MV Approche Maximum a

Déconvolution

Aveogle

riogularioalior

Minimisation

Conclusion

Résultats

$f_{\text{post}}(x)$ = fonction pénalisante **a posteriori** :

$$f_{\text{post}}(\boldsymbol{x}) = f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x})$$

$f_{ m data}(x)$ = terme de **vraisemblance** (attache aux données)

$$f_{\text{data}}(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - \mathbf{m}(\mathbf{x}))^{\text{T}} \cdot \mathbf{C}_{\text{e}}^{-1} \cdot (\mathbf{y} - \mathbf{m}(\mathbf{x})),$$
$$= \frac{1}{2} \sum_{k=Pixels} w_k (y_k - \mathbf{m}(\mathbf{x})_k)^2.$$

$f_{\text{prior}}(x)$ = terme de **régularisation** (a priori)

$$f_{\text{prior}}(x) = \mu \times \Omega(x)$$
.

Maximum a posteriori

Introduction

MV Approche Maximum a

Déconvolution

Aveugle

riegularisatioi

Conclusion

$$f_{\text{post}}(x)$$
 = fonction pénalisante **a posteriori** :

$$f_{\text{post}}(\boldsymbol{x}) = f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x})$$

$f_{\text{data}}(x)$ = terme de **vraisemblance** (attache aux données) :

$$f_{\text{data}}(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - \mathbf{m}(\mathbf{x}))^{\text{T}} \cdot \mathbf{C}_{\text{e}}^{-1} \cdot (\mathbf{y} - \mathbf{m}(\mathbf{x})),$$
$$= \frac{1}{2} \sum_{k=Pixels} w_k (y_k - \mathbf{m}(\mathbf{x})_k)^2.$$

 $f_{\text{prior}}(x)$ = terme de **régularisation** (a priori)

$$f_{\text{prior}}(x) = \mu \times \Omega(x)$$
.

Maximum a posteriori

Introduction

MV Approche Maximum a

Déconvolution Aveuale

riogularioalior

Conclusio

Coriolasio

 $f_{\text{post}}(x)$ = fonction pénalisante **a posteriori** :

$$f_{\text{post}}(\mathbf{x}) = f_{\text{data}}(\mathbf{x}) + f_{\text{prior}}(\mathbf{x})$$

 $f_{\text{data}}(x)$ = terme de **vraisemblance** (attache aux données) :

$$f_{\text{data}}(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - \mathbf{m}(\mathbf{x}))^{\text{T}} \cdot \mathbf{C}_{\text{e}}^{-1} \cdot (\mathbf{y} - \mathbf{m}(\mathbf{x})),$$
$$= \frac{1}{2} \sum_{k=Pixels} w_k (y_k - m(\mathbf{x})_k)^2.$$

 $f_{\text{prior}}(x)$ = terme de **régularisation** (a priori) :

$$f_{\text{prior}}(\mathbf{x}) = \mu \times \Omega(\mathbf{x})$$
.

Cas de la déconvolution aveugle

Introduction

Résolution

Approche Maximu

Déconvolution

Aveugle

negularisatio

Minimisation

Conclusion

Résultats

PSF h et objet x inconnus

Estimer h et x d'après les données y: Déconvolution aveugle.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}, \boldsymbol{h}),$$

Cas de la déconvolution aveugle

Introduction

ésolution

Approche Maximur

Déconvolution Aveugle

Régularisation

Conclusion

PSF h et objet x inconnus

Estimer h et x d'après les données y: **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}, \boldsymbol{h}),$$

Cas de la déconvolution aveugle

introduction

ésolution

Approche Maximur

Déconvolution Aveugle

Régularisatio

Conclusio

PSF h et objet x inconnus

Estimer h et x d'après les données y: **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\mathbf{x}, \mathbf{h}) = f_{\text{data}}(\mathbf{x}, \mathbf{h}; \mathbf{y}) + f_{\text{prior}}(\mathbf{x}, \mathbf{h}),$$

= $f_{\text{data}}(\mathbf{x}, \mathbf{h}; \mathbf{y}) + f_{\text{prior}}(\mathbf{x}) + f_{\text{prior}}(\mathbf{h}).$

Introduction

Résolution

Régularisation

Régularisati séparable

Régularisation

spatiale de l'obje

spatiale de la PS

WIIIIIIIISauoii

Résultats

Régularisation

Régularisation séparable

Introduction

Dámiladast

Régularisation Principe

Régularisation séparable

Taxonomie Régularisation

Régularisation

spatiale de la PSF Autres dimensions

Minimisation

Conclusion

Idée:

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(x) = f_{\text{spatial}}(x) + f_{\text{spectral}}(x) + f_{\text{temporel}}(x)$$

Une régularisation spatiale

$$f_{\mathrm{spatial}}(\mathbf{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \, \Omega_{\mathrm{spatial}}(\mathbf{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(x) = \sum_{k,t} \beta_{k,t} \Omega_{\text{spectral}}(x_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(x) = \sum_{l,k} \mu_{\lambda,k} \, \Omega_{\text{temporel}}(x_{\lambda,k})$$

Régularisation séparable

Introduction

B.C. Date of

Régularisation Principe

Régularisation séparable

Taxonomie Régularisation spatiale de l'obje

Régularisation spatiale de la PSF

Minimisation

IVIIIIIIIISauoii

Récultate

Idée:

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(x) = f_{\text{spatial}}(x) + f_{\text{spectral}}(x) + f_{\text{temporel}}(x)$$

Une régularisation spatiale

$$f_{\text{spatial}}(\mathbf{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \, \Omega_{\text{spatial}}(\mathbf{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(x) = \sum_{k,t} \beta_{k,t} \Omega_{\text{spectral}}(x_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(x) = \sum_{\lambda,k} \mu_{\lambda,k} \Omega_{\text{temporel}}(x_{\lambda,k})$$

Régularisation séparable

Introduction

Resolution

Régularisatio

Régularisation

séparable Taxonomie

Régularisation spatiale de l'obje Régularisation

spatiale de la PSF

Autres dimensions

Minimisation

iviii iii iioddioi i

Récultate

Idée:

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(\mathbf{x}) = f_{\text{spatial}}(\mathbf{x}) + f_{\text{spectral}}(\mathbf{x}) + f_{\text{temporel}}(\mathbf{x})$$

Une régularisation spatiale

$$f_{\text{spatial}}(\mathbf{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \, \Omega_{\text{spatial}}(\mathbf{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(\mathbf{x}) = \sum_{k,t} \beta_{k,t} \Omega_{\text{spectral}}(\mathbf{x}_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(x) = \sum_{\lambda,k} \mu_{\lambda,k} \Omega_{\text{temporel}}(x_{\lambda,k})$$

Régularisation séparable

introductio

Régularisa

Principe Régularisation

Régularisation séparable

Régularisation spatiale de l'objet Régularisation continue de la PSI

Autres dimensions

Minimisation

Résultats

ldée :

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(\mathbf{x}) = f_{\text{spatial}}(\mathbf{x}) + f_{\text{spectral}}(\mathbf{x}) + f_{\text{temporel}}(\mathbf{x})$$

Une régularisation spatiale

$$f_{\text{spatial}}(\mathbf{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \Omega_{\text{spatial}}(\mathbf{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(\mathbf{x}) = \sum_{k,t} \beta_{k,t} \Omega_{\text{spectral}}(\mathbf{x}_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(\mathbf{x}) = \sum_{\lambda,k} \mu_{\lambda,k} \, \Omega_{\text{temporel}}(\mathbf{x}_{\lambda,k})$$

Forme générale de la régularisation

Introduction

Régularisatio

Principe Régularisat

séparable

Taxonomie

spatiale de l'obje

Régularisation

Autres dimensis

Minimisation

Résultats

Forme générale

$$\Omega_{\rm S}(\boldsymbol{x}) = \sum_k \psi_k(\boldsymbol{x})\,,$$

Forme générale de la régularisation

Introduction

1103010

Régularisat

Principe Págularicatio

séparable Taxonomie

Régularisation

spatiale de l'ob

Régularisation

spatiale de la PSF

Conclusion

Résultats

Forme générale

$$\Omega_{\rm S}(\boldsymbol{x}) = \sum_k \psi_k(\boldsymbol{x})\,,$$

Avec $\psi_k(x)$:

• Total Variation [Rudin et al. 1992]

$$\psi_k(\mathbf{x}) = \sqrt{(\nabla_{\mathrm{E}} \cdot \mathbf{x})_k^2 + (\nabla_{\mathrm{N}} \cdot \mathbf{x})_k^2}.$$

• maximum d'entropie (avec a priori p) [Skilling&Bryan 1984] :

$$\psi_k(\mathbf{x}) = \left[p_k - x_k + x_k \log(x_k/p_k) \right]$$

• Contrainte de support + positivité [Kundur1996]

$$\Omega_{\mathrm{S}}(\mathbfit{x}) = \sum_{\mathbf{x} \in \mathbf{S}} \left[\min(\mathbfit{x} - \mathsf{B} \mathsf{g}, 0) \right]^2 + \gamma \sum_{\mathbf{x} \in \mathbf{S}} \left[\mathbfit{x} - \mathsf{B} \mathsf{g} \right]^2$$

Forme générale de la régularisation

Introduction

Régularisation

Principe

Régularisat séparable

Taxonomie

Régularisation spatiale de l'obi

Régularisation

spatiale de la PS

Minimication

IVIII III III III GUUGI

Dácultata

Forme générale

$$\Omega_{\rm S}(\mathbf{x}) = \sum_k \psi_k(\mathbf{x})\,,$$

Le plus souvent un opérateur linéaire du type :

$$\psi_k(\mathbf{x}) = \varphi([\mathbf{A} \cdot \mathbf{x} + \mathbf{B}]_k).$$

où φ est une métrique (éventuellement pondérée).

A permet de changer d'espace (ou pas)

- espace de fourier,
- espace des ondellettes,
- espace des "gradient"
- **a**

Introduction

Régularisatio

Principe Pégulariest

Régularisat séparable

Taxonomie

Régularisation

Spatiale de l'Obj

spatiale de la PSF

Autres dimensions

Minimisation

0----

Résultats

φ est une métrique :

- Positive : $\varphi(t) \ge 0$,
- **Définie** : $\varphi(t) = 0$ si et seulement si t = 0,
- Symétrique : $\varphi(-t) = \varphi(t)$, $\forall t$,
- Croissante monotone : $t > t'\varphi(t) \ge \varphi(t') \Rightarrow \forall \{t, t'\},\$

Dans le cas quadratique $(\varphi = ||.||_{\mathbf{W}}^2)$

$$\Omega_{S}(x) = \left[\mathbf{A} \cdot x + \mathbf{B}\right]^{T} \cdot \mathbf{W} \cdot \left[\mathbf{A} \cdot x + \mathbf{B}\right]$$

a priori gaussien avec $W = Cov^{-1}(A \cdot x)$.

Si $f_{\text{data}}(x)$ est **quadratique** alors la solution est **analytique**. (si $\mathbf{A} = \mathbf{I}$, on a le filtre de Wiener).

Introduction

Régularisatio

Principe

Régularisati séparable

Taxonomie

Régularisation

Dágulariantian

spatiale de la PSF

Autres dimensions

....

Conclusion

Résultats

φ est une métrique :

- Positive : $\varphi(t) \ge 0$,
- **Définie** : $\varphi(t) = 0$ si et seulement si t = 0,
- Symétrique : $\varphi(-t) = \varphi(t)$, $\forall t$,
- Croissante monotone : $t > t' \varphi(t) \ge \varphi(t') \Rightarrow \forall \{t, t'\},\$

Dans le cas quadratique $(\varphi = ||.||_{\mathbf{W}}^2)$

$$\Omega_{S}(x) = \left[\mathbf{A} \cdot x + \mathbf{B} \right]^{T} \cdot \mathbf{W} \cdot \left[\mathbf{A} \cdot x + \mathbf{B} \right]$$

a priori gaussien avec $W = Cov^{-1}(A \cdot x)$

Si $f_{\text{data}}(x)$ est **quadratique** alors la solution est **analytique**. (si $\mathbf{A} = \mathbf{I}$, on a le filtre de Wiener).

Taxonomie

φ est une métrique :

- Positive : $\varphi(t) \geq 0$,
- **Définie** : $\varphi(t) = 0$ si et seulement si t = 0,
- Symétrique : $\varphi(-t) = \varphi(t)$, $\forall t$,
- Croissante monotone : $t > t' \varphi(t) \ge \varphi(t') \Rightarrow \forall \{t, t'\},\$

Dans le cas quadratique $(\varphi = ||.||_{\mathbf{W}}^2)$

$$\Omega_{S}(x) = \left[\mathbf{A} \cdot x + \mathbf{B} \right]^{T} \cdot \mathbf{W} \cdot \left[\mathbf{A} \cdot x + \mathbf{B} \right]$$

a priori gaussien avec $\mathbf{W} = \text{Cov}^{-1}(\mathbf{A} \cdot \mathbf{x})$.

Introduction

..........

Régularisatio

Principe Régularisati

Régularisation séparable

Taxonomie Régulariaction

spatiale de l'obj

Régularisation

Autres dimension

wiiiiiiiioau

Conclusion

Résultats

φ est une métrique :

- Positive : $\varphi(t) \geq 0$,
- **Définie** : $\varphi(t) = 0$ si et seulement si t = 0,
- Symétrique : $\varphi(-t) = \varphi(t)$, $\forall t$,
- Croissante monotone : $t > t'\varphi(t) \ge \varphi(t') \Rightarrow \forall \{t, t'\},\$

Dans le cas quadratique $(\varphi = ||.||_{\mathbf{W}}^2)$

$$\Omega_{S}(x) = \left[\mathbf{A} \cdot x + \mathbf{B} \right]^{T} \cdot \mathbf{W} \cdot \left[\mathbf{A} \cdot x + \mathbf{B} \right]$$

a priori gaussien avec $\mathbf{W} = \operatorname{Cov}^{-1}(\mathbf{A} \cdot \mathbf{x})$.

Si $f_{\text{data}}(x)$ est **quadratique** alors la solution est **analytique**. (si A = I, on a le filtre de Wiener).

Normes L₀ et L₁

Introduction

Régularisation

Principe Régularisation

séparable Taxonomie

iaxonomii

Regularisation enatiale de l'obi

Régularisation

spatiale de la PS

Minimisation

Conclusion

Résultats

La parcimonie :

Il y a *a priori* peu de coefficients significatifs dans l'espace "d'arrivé" de ${\bf A}$.

Cela signifie

$$\Omega_{\mathbf{S}}(\mathbf{x}) = \sum_{k} \|(\mathbf{A} \cdot \mathbf{x})_{k}\|_{0} .$$

Problème combinatoire NP-Dur

Le résultat peut être approché en utilisant la norme L₁ [Tao...

$$\Omega_{\mathcal{S}}(x) = \sum_{k} \|(\mathbf{A} \cdot x)_{k}\|_{1}$$

Normes L₀ et L₁

Introduction

Régularisatio

Régularisation

séparable Taxonomie

Iaxonomie

spatiale de l'obj

Régularisation spatiale de la PSF

Autres dimension

Minimisation

Dácultata

La parcimonie :

Il y a *a priori* peu de coefficients significatifs dans l'espace "d'arrivé" de ${\bf A}$.

Cela signifie:

$$\Omega_{\rm S}(\boldsymbol{x}) = \sum_k \|(\mathbf{A} \cdot \boldsymbol{x})_k\|_0 .$$

Problème combinatoire NP-Dur

Le résultat peut être approché en utilisant la norme L₁ [Tao... 1 ·

$$\Omega_{\mathbf{S}}(\mathbf{x}) = \sum_{k} \|(\mathbf{A} \cdot \mathbf{x})_{k}\|_{1}$$

Normes L₀ et L₁

Introduction

Régularisation

Principe Régularisation

séparable Taxonomie

Idaonomia

spatiale de l'ob

Régularisation

Autres dimension

Minimisation

Dácultata

La parcimonie :

Il y a *a priori* peu de coefficients significatifs dans l'espace "d'arrivé" de A.

Cela signifie:

$$\Omega_{\mathbf{S}}(\mathbf{x}) = \sum_{k} ||(\mathbf{A} \cdot \mathbf{x})_{k}||_{0} .$$

Problème combinatoire NP-Dur

Le résultat peut être approché en utilisant la norme L₁ [Tao... 1 ·

$$\Omega_{\mathcal{S}}(x) = \sum_{k} \|(\mathbf{A} \cdot x)_{k}\|_{1}$$

Normes L_0 et L_1

troductio

nesolutio

Régularisa Principe

séparable Taxonomie

Régularisation spatiale de l'objet Régularisation spatiale de la PSF

Autres dimensions

Minimisation

Régultate

La parcimonie :

Il y a *a priori* peu de coefficients significatifs dans l'espace "d'arrivé" de ${\bf A}$.

Cela signifie:

$$\Omega_{\rm S}(x) = \sum_k ||(\mathbf{A} \cdot x)_k||_0.$$

Problème combinatoire NP-Dur

Le résultat peut être approché en utilisant la norme L_1 [Tao...]:

$$\Omega_{\rm S}(\mathbf{x}) = \sum_{k} \|(\mathbf{A} \cdot \mathbf{x})_k\|_1 .$$

Normes non-quadratiques

Introduction

Régularisatio

Principe Régularisati

séparable Taxonomie

Taxonomie

spatiale de l'obj

Régularisation

spatiale de la PS

Minimication

iviii iii iii iioddioi

Résultats

De nombreuses métriques ou fonctions de potentiel ont été proposées [Charbonnier1997,Nikolova1996].

• ℓ_2 - ℓ_1 :

$$\varphi_{\ell_2-\ell_1}(t) = 2\eta^2 \left(\frac{|t|}{\eta} - \log\left(1 + \frac{|t|}{\eta}\right)\right)$$

lorentzienne

$$\varphi_{\rm Lorentz}(t) = \eta^2 \, \log \left(1 + \frac{t^2}{2 \, \eta^2} \right), \label{eq:power_power}$$

Geman-McClure

$$\varphi_{\rm GM}(t) = \eta^2 \, \frac{t^2}{\eta^2 + t^2}$$

• ℓ_2 - ℓ_0

$$\varphi_{\ell_2-\ell_0}(t) = \eta^2 \arctan\left(\frac{t^2}{\eta^2}\right)$$

Normes non-quadratiques

Introduction

Regularisa Principe

Régularisation séparable

Taxonomie

spatiale de l'objet Régularisation spatiale de la PSF

Minimiestion

Résultats

De nombreuses métriques ou fonctions de potentiel ont été proposées [Charbonnier1997,Nikolova1996].

•
$$\ell_2$$
– ℓ_1 :

$$\varphi_{\ell_2-\ell_1}(t) = 2\eta^2 \left(\frac{|t|}{\eta} - \log\left(1 + \frac{|t|}{\eta}\right)\right),$$

lorentzienne :

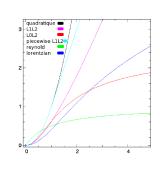
$$\varphi_{\text{Lorentz}}(t) = \eta^2 \log \left(1 + \frac{t^2}{2 \eta^2} \right),$$

Geman-McClure :

$$\varphi_{\rm GM}(t) = \eta^2 \, \frac{t^2}{\eta^2 + t^2} \,,$$

• ℓ_2 – ℓ_0 :

$$\varphi_{\ell_2-\ell_0}(t) = \eta^2 \arctan\left(\frac{t^2}{\eta^2}\right),$$



Régularisation spatiale

A priori de lissage, contraintes sur les gradients spatiaux :

$$\Omega_{\text{spatial}}(x) = \sum_{r} \sum_{k' \in V_r} \varphi\left(\frac{x_k - x_{k'}}{d(k, k')}\right),\,$$

- V_k : voisinage spatial du pixel k,
- d(k, k'): distance entre les pixels k.

Régularisation spatiale de l'objet

Régularisation spatiale

Introduction

Résolution

Régularisation

Régularisati séparable

Taxonomie

Régularisation spatiale de l'objet

Régularisation spatiale de la PSF

Minimication

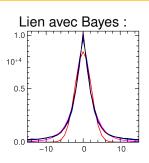
wiii iii ii isalion

Résultats

A priori de lissage, contraintes sur les gradients spatiaux :

$$\Omega_{\text{spatial}}(x) = \sum_{r} \sum_{k' \in V_k} \varphi\left(\frac{x_k - x_{k'}}{d(k, k')}\right),\,$$

- V_k : voisinage spatial du pixel k,
- d(k, k'): distance entre les pixels k.



Noir histogramme du gradient horizontal,

Rouge gaussienne,
Bleu laplacienne,
Magenta lorentzienne.

Résultats simulations

Introduction

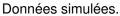
Résolution

Régularisa Principe Régularisation séparable

Régularisation spatiale de l'objet Régularisation spatiale de la PSF

Minimisation

. . .



Vérité.

Résultats simulations

Introduction

Résolution

Régularisa Principe Régularisation séparable

Régularisation spatiale de l'objet Régularisation

Autres dimension

Résultats

Régularisation quadratique (EQM = 23 dB).

Régularisation avec norme $\ell_2 - \ell_1$ (EQM = 20.8 dB).

Résultats simulations

Introduction

Résolution

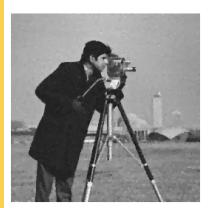
Régularisa Principe Régularisation séparable

Régularisation spatiale de l'objet Régularisation

Régularisation spatiale de la PSF Autres dimensions

.....

Résultats



Régularisation L_1 (EQM = $20.9 \, dB$).

Total Variation, (EQM = 20.9 dB).

Introduction

B/ 1 1 11

Régularisatio

Principe Régularies

Régularisat séparable

Régularisation

spatiale de l'obje

spatiale de la PSF

Autres dimensions

.

0---!---

Résultats

Régularisation spatiale

- Identique à la régularisation spatiale
- ② Si l'on dispose d'une forme a priori $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\text{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

- Contrainte de normalisation.
- Contraintes de positivité.

Introduction

Régularisatio

Principe Régularisati

Taxonomie

spatiale de l'obje

Régularisation spatiale de la PSF

Autres dimension

001101001011

Résultats

Régularisation spatiale

- Identique à la régularisation spatiale,
- ② Si l'on dispose d'une forme a priori $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\text{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

- Contrainte de normalisation
- Contraintes de positivité.

Introduction

Régularisation

Principe Régularisati

séparable

Régularisation

spatiale de l'obje Régularisation

spatiale de la PSF

Autres dimension

_ . . .

Coriolasioi

Résultats

Régularisation spatiale

- Identique à la régularisation spatiale,
- ② Si l'on dispose d'une forme a priori $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\text{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

- Contrainte de normalisation.
- Contraintes de positivité.

Introduction

Régularisation

Principe Régularisati

Régularisation séparable

Régularisation

spatiale de l'obj

Régularisation spatiale de la PSF

Autres dimensions

Conclusion

Résultats

Régularisation spatiale

- Identique à la régularisation spatiale,
- ② Si l'on dispose d'une forme a priori $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\text{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

- Contrainte de normalisation
- Contraintes de positivité.

Introduction

Régularisation

Principe Régularisation

Taxonomie

Régularisation spatiale de l'ob

Régularisation spatiale de la PSE

Autres dimension

....

Conclusion

Résultats

Régularisation spatiale

- Identique à la régularisation spatiale,
- ② Si l'on dispose d'une forme a priori $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\text{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

- Contrainte de normalisation,
- Contraintes de positivité.

Introduction

i lesolution

Régularisation

Principe Régularisati séparable

Taxonomie

Régularisation

Régularisation

Autres dimensions

Minimisation

Résultats

Introduction

Résolution

Régularisation

Principe Régularisat

séparable

Régularisation

Régularisation

Autres dimensions

wiiiiiiisauoi

0----

Résultats

- Variation lente de l'objet ou de la PSF,
- Objet semblable à un facteur près dans chaque canaux spectraux,
- Hautes fréquences de chaque canal RGB corrélées,
-

Introduction

Résolution

Régularisation

Régularisati

Taxonomie

Régularisation spatiale de l'objet Régularisation

Autres dimensions

....

Conclusion

Résultats

- Variation lente de l'objet ou de la PSF,
- Objet semblable à un facteur près dans chaque canaux spectraux,
- Hautes fréquences de chaque canal RGB corrélées,
- . . .

Introduction

Résolution

Régularisatio

Principe Régularisation séparable

Taxonomie Régularisation

Régularisation spatiale de l'objet Régularisation spatiale de la PSI

Autres dimensions

Ooriciasioi

- Variation lente de l'objet ou de la PSF,
- Objet semblable à un facteur près dans chaque canaux spectraux,
- Hautes fréquences de chaque canal RGB corrélées,

Introduction

Résolution

Régularisatio

Principe Régularisation séparable

Régularisation spatiale de l'obje Régularisation

Autres dimensions

Conclusion

- Variation lente de l'objet ou de la PSF,
- Objet semblable à un facteur près dans chaque canaux spectraux,
- Hautes fréquences de chaque canal RGB corrélées,

Introduction

Résolution

Régularisatio

Principe Régularisati séparable

Taxonomie

Régularisation spatiale de l'obje Régularisation

Autres dimensions

.....

Conclusion

Résultats

- Variation lente de l'objet ou de la PSF,
- Objet semblable à un facteur près dans chaque canaux spectraux,
- Hautes fréquences de chaque canal RGB corrélées,
- ...

Resolution

Régularisation

Minimisation

onclusion

Régultate

Minimisation

.

Régularisatio

Minimisation

Résultats

Il ne reste plus qu'à trouver $\{x^{\text{MAP}}, h^{\text{MAP}}\}$ qui minimise :

$$\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\} = \underset{\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\}}{\arg\min} \left[f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}) \right].$$

3 façons différentes

(Voir [Figueiredo2007])

Résolutio

Régularisation

Minimisation

Résultats

Il ne reste plus qu'à trouver $\{x^{MAP}, h^{MAP}\}$ qui minimise :

$$\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\} = \underset{\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\}}{\arg\min} \left[f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}) \right].$$

3 façons différentes

(Voir [Figueiredo2007]):

- 1 minimiser $f_{\text{post}} = f_{\text{data}}(x, h) + \mu \Omega_{\text{spatial}}(x)$, ex. MAAD...
- 2 minimiser $f_{\text{data}}(x)$ sous la contrainte $\Omega_{\text{spatial}}(x) < \epsilon$, ex. LASSO...
- \odot minimiser $\Omega_{\mathrm{spatial}}(x)$ sous la contrainte $f_{\mathrm{data}}(x) < \epsilon$, ex. Basis Pursuit. . .

Résolutio

Régularisatio

Minimisation

. . .

Résultats

Il ne reste plus qu'à trouver $\{x^{MAP}, h^{MAP}\}$ qui minimise :

$$\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\} = \underset{\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\}}{\arg\min} \left[f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}) \right].$$

3 façons différentes

(Voir [Figueiredo2007]):

- minimiser $f_{\text{post}} = f_{\text{data}}(\mathbf{x}, \mathbf{h}) + \mu \Omega_{\text{spatial}}(\mathbf{x}),$ ex. MAAD...
- 2 minimiser $f_{\rm data}(x)$ sous la contrainte $\Omega_{\rm spatial}(x) < \epsilon$, ex. LASSO...
- \odot minimiser $\Omega_{\mathrm{spatial}}(x)$ sous la contrainte $f_{\mathrm{data}}(x) < \epsilon$, ex. Basis Pursuit. . .

Introduction

Resolution

Régularisatio

Minimisation

Résultats

Il ne reste plus qu'à trouver $\{x^{MAP}, h^{MAP}\}$ qui minimise :

$$\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\} = \underset{\{\boldsymbol{x}^{\text{MAP}}, \boldsymbol{h}^{\text{MAP}}\}}{\arg\min} \left[f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}) \right].$$

3 façons différentes

(Voir [Figueiredo2007]):

- minimiser $f_{\text{post}} = f_{\text{data}}(\mathbf{x}, \mathbf{h}) + \mu \Omega_{\text{spatial}}(\mathbf{x}),$ ex. MAAD...
- **2** minimiser $f_{\text{data}}(x)$ sous la contrainte $\Omega_{\text{spatial}}(x) < \epsilon$, ex. LASSO...
- 3 minimiser $\Omega_{\mathrm{spatial}}(x)$ sous la contrainte $f_{\mathrm{data}}(x) < \epsilon$, ex. Basis Pursuit. . .

Introduction

Resolutio

Régularisation

Minimisation

Résultats

Il ne reste plus qu'à trouver $\{x^{MAP}, h^{MAP}\}$ qui minimise :

$$\{\boldsymbol{x}^{\text{MAP}},\boldsymbol{h}^{\text{MAP}}\} = \underset{\{\boldsymbol{x}^{\text{MAP}},\boldsymbol{h}^{\text{MAP}}\}}{\arg\min} \left[f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}) \right].$$

3 façons différentes

(Voir [Figueiredo2007]):

- minimiser $f_{\text{post}} = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + \mu \, \Omega_{\text{spatial}}(\boldsymbol{x}),$ ex. MAAD...
- 2 minimiser $f_{\text{data}}(x)$ sous la contrainte $\Omega_{\text{spatial}}(x) < \epsilon$, ex. LASSO...

Minimisation

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Introduction

negularisation

Minimisation

Conclusio

D 4 a college

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$
- 3 estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence

Le solution dépend du point de départ

Objet x⁽⁰⁾ doit permettre un bonne estimation de la PSF

Le critère

Minimisation

n'est convexe ni homogène.

Minimisation alternée du critère $f_{\text{post}}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,

 $f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$.

Introduction

Dágularication

Minimisation

Conclusion

Régultate

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- **2** estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- 3 estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence

Introduction

Dágularication

Minimisation

0.....

Récultate

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- **2** estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- **3** estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence

Introduction

Dágularication

Minimisation

Conclusio

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- **2** estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- **3** estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- o répéter les étapes 2 et 3 jusqu'à convergence.

Introduction

5/

Minimisation

Minimisation

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- **2** estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- 3 estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence.

Le solution dépend du point de départ :

- **PSF** Si l'on dispose d'une PSF *a priori* : $h^{(0)} = p$,
- **Objet** $x^{(0)}$ doit permettre un bonne estimation de la PSF $h^{(1)}$.

Introduction

Dágularication

Minimisation

Conclusion

Dácultata

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- **2** estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- **3** estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence.

Le solution dépend du point de départ :

- **PSF** Si l'on dispose d'une PSF a priori : $h^{(0)} = p$,
- Objet $x^{(0)}$ doit permettre un bonne estimation de la PSF $h^{(1)}$

Introduction

Dágulariantia

Minimisation

57 1. .

Le critère

$$f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h})$$
.

n'est convexe ni homogène.

Minimisation alternée du critère $f_{post}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- **2** estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- 3 estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- 4 répéter les étapes 2 et 3 jusqu'à convergence.

Le solution dépend du point de départ :

- **PSF** Si l'on dispose d'une PSF a priori : $h^{(0)} = p$,
- **Objet** $x^{(0)}$ doit permettre un bonne estimation de la PSF $h^{(1)}$.

Estimation d'un objet initial

Résolution
Régularisation
Minimisation

Exemple sur deux types de flou.

Flou disque.

Flou gaussien.

Estimation d'un objet initial

Introduction

Minimisation

Résultats

Idée: "Calibrer" la PSF sur les bords francs.

Segmenter les données pour mettre en évidence les bords francs.

Objet initial proposé $(x^{(0)})$.

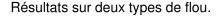
Estimation d'un objet initial

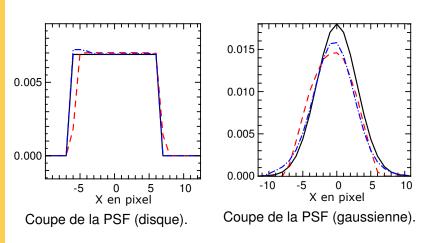
ntroduction

Dágularicatio

Minimisation

Conclusion





-- Première itération ($\mathbf{h}^{(1)}$), -- Convergence ($\mathbf{h}^{(fin)}$), -- Verité.

Introduction

Resolution

Régularisation

Minimisation

Conclusion

Résultats

Conclusion

Conclusion & Perspectives

Introduction

Résolution

Régularienti

Minimisation

Conclusion

Ces approches itératives semblent efficaces dans de nombreuses applications.

Mais: Nombreux choix

- pour la régularisation,
- Pour la méthode de minimisation,
- pour le point de départ.

Conclusion & Perspectives

Introduction

Résolution

Régularisati

Minimisation

Conclusion

Ces approches itératives semblent efficaces dans de nombreuses applications.

Mais: Nombreux choix

- pour la régularisation,
- Pour la méthode de minimisation,
- o pour le point de départ.

Introduction

nesolution

Régularisatio

Minimisatio

Conclusion

Résultats

Coronarograph

Microscopie

Microscopie conventionnelle

Résultats

Séquence vidéo coronarographique

Introduction

riesolutio

Regularısatı

Minimisation

Dácultate

Coronarographie

Microscopie Confocale

Microscopie

Examen radiologique des artère coronaires :



(Observation effectuée par A. Gressard and R. Dauphin à l'hôpital de la Croix-Rousse)

Introduction

_

Régularisation

Minimisation

_ . . .

Résultats

Coronarographie

Microscopie Confocale

Microscopie

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

Les hyper-paramètres spatiaux sur la PSF et l'ol constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les nyper-parametres temporeis sur la PSF et robjet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Introduction

Régularisation

Minimisation

Résulta

Coronarographie

Confocale

Microscopi

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Introduction

i legularisatio

.....

Conclusion

Coronarographie

Microscopie

Confocale

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Introduction

Regularisatio

.....

Conclusio

Coronarographie

Microscopie Confocale

Microscopi

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Introduction

Coriciasic

Coronarographie

Microscopie Confocale

Confocale Microscopia Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Coronarographie

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement:

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Introduction

5/ 1 / //

negularisatio

.....

Conclusio

Coronarographie

Microscopie Confocale Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

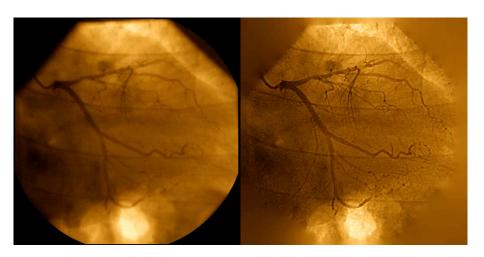
→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle de séquences coronarographiques.



(Observation effectuée par A. Gressard and R. Dauphin à l'hôpital de la Croix-Rousse) [Soulez et al., ICIP, 2008 ; Soulez et al., EUSIPCO, 2008]

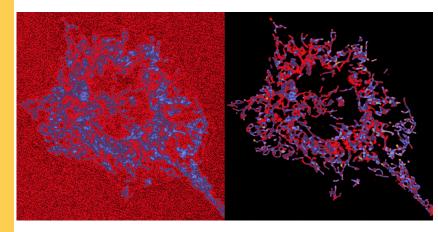
Microscopie Confocale

ntroduction Résolution

Regularisatio

Minimisation

Résultats Coronarograph Microscopie Confocale Observation de mitochondries d'une cellule cardiaque Non-Beating HL-1 en microscopie confocale à fluorescence.



(Expérience effectuée par S. Pelloux et Y. Tourneur)

Microscopie conventionnelle

Introduction

Régularicatio

Minimisation

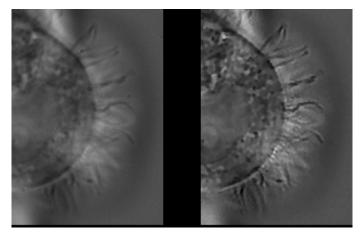
Willimisauon

Résultats

Coronarogra

Microscopie

Observation d'une cellule cilliée épithéliale au microscope conventionnel.



(Expérience effectuée par B. Chhin et Y. Tourneur)