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Introduction

Formulation of reconstruction problem

Constraint-free formulation :

min
x

1
2
‖Ax− b‖22 + λφ(x) (1)

Constrainted formulation :

min
x

φ(x) s.t. ‖Ax− b‖22 ≤ ε (2)

Sensing matrix A ∼ PM ×N2 :

P : Number of projections

M : Detector’s resolution

N2 : Image’s resolution
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Introduction

Detector/Image resolution ratio
Numeriqual experience shows :

PM ' N2 : Algebraic methods can give nice reconstructions.
PM < N2 : Reconstruction with artifacts.

Few projections : P << N2/M , A is underdetermined.

Fig.: Detector Resolution : 256× 16. MSE reconstruction with 16
projections(left) and 8 projections(right)
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Compressed Sensing Theory

Uniqueness of sparse solution

x is S-sparse if ‖x‖0 = S.

Any 2S column of A are independant ⇔ A is injective on all
S-sparse signals.

S-sparse signal can be uniquely recovered by :

min
x
‖x‖0 s.t. Ax = b (P0)

Convex relaxation :

min
x
‖x‖1 s.t. Ax = b (P1)
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Compressed Sensing Theory

Characterization of sensing matrix

Definition (Restricted Isometry Property)

RIP of A is the smallest δS ≥ 0 s.t. for all S-sparse signal x :

(1− δS)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δS)‖x‖22 (3)

i.e., all S-column of A act like isometry.

δs bounds the singular values of S-submatrix

Small δs, nice behaviour of A

If δ2S = 1, then some 2S submatrix A2S is noninjective.
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Compressed Sensing Theory

P0 and P1 equivalence

Theorem (Perfect reconstruction)

Given that 2S-RIP of A is δ2S ≤
√

2− 1, for a S-sparse true signal
x, P1 solution x∗ is exactly x.

Theorem (Almost Perfect reconstruction)

Under the same hypothesis, for a general true signal x, P1 solution
x∗ obeys :

‖x∗ − x‖1 ≤ C‖x− xS‖1 and

‖x∗ − x‖2 ≤ C
‖x− xS‖1√

S

where xS = (x1, x2, ..xS , 0..) is the S biggest term approximation
of x.
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Compressed Sensing Theory

Robustess of P1 reconstruction

For noisy observation b = Ax+ ε :

min
x
‖x‖1 s.t. ‖Ax− b‖2 ≤ ε (NP1)

Theorem (Robust reconstruction)

Under the same hypothesis, the solution x∗ to (8) obeys :

‖x∗ − x‖2 ≤ C1ε+ C2
‖x− xS‖1√

S
(4)
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Compressed Sensing Theory

Sparsifying Transforms

Natural objects are sparse under Sparsifying Transforms D

Incorporating the sensing matrix A :

minα ‖α‖1 s.t. ADα = b or , (5)

minx ‖D∗x‖1 s.t. Ax = b (6)

Final reconstruction :

x∗ = Dα∗, α∗ is solution of (5)
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Compressed Sensing Theory

Random sensing matrices

Sensing matrices A satisfy RIP with probability 1−O(e−N ) :

Gaussian and Bernouille matrix : random entries

K > CS log(N/K)

Discret Fourier Transform matrix : random rows

K > CS logN (conjectured)

Incoherent sensing and sparsifying transform matrices

K randomly choosed observations can measure the essential
part of x !

Han WANG, Laurent DESBAT, Samuel LEGOUPIL Tomographic Reconstruction From Few Projections



Tomographic Reconstruction From Few Projections

Some Numerical Results

Plan

1 Introduction

2 Compressed Sensing Theory

3 Some Numerical Results

Han WANG, Laurent DESBAT, Samuel LEGOUPIL Tomographic Reconstruction From Few Projections



Tomographic Reconstruction From Few Projections

Some Numerical Results

Projected Gradient Method for P1 Problem

Solve P1

min ‖x‖1 s.t. Ax = b (7)

by simple projected gradient algorithm :

Approximation : φt(x) =
√
t+ x2 ' |x|

Projection : z → H = Ax = b

Remark :

Slow operations

Not stable wrt sparsifying transform
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Some Numerical Results

P1 Results : Projected Gradient Method 1

Fig.: MSE vs. P1 . 10 Projections. Detector/Image=16
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Some Numerical Results

P1 Results : Projected Gradient Method 2

Fig.: MSE vs. P1 . 12 Projections. Detector/Image=16
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Some Numerical Results

P1 Results : Projected Gradient Method 3

Fig.: MSE vs. P1 . 45 Projections. Detector/Image=4
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Some Numerical Results

IAS Method for NP1 Problem

min
x

1
2
‖Ax− b‖2 + µ‖x‖1 (8)

Transformed to BCQP :

min
z≥0

1
2
z∗Bz + c∗z (BCQP)

Infeasible Active Set(IAS) method :

Works on KKT system

Finite steps convergence(less than 10 usually)

B must be definite positive

Sensitive to regularization parameters
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Some Numerical Results

NP1 Results : IAS Method 1

Fig.: MSE vs. P1 . 12 Projections. Detector/Image=16. Source
Intensity=105
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Some Numerical Results

NP1 Results : IAS Method 2

Fig.: MSE vs. P1 . 12 Projections. Detector/Image=16. Source
Intensity=104

Han WANG, Laurent DESBAT, Samuel LEGOUPIL Tomographic Reconstruction From Few Projections



Tomographic Reconstruction From Few Projections

Some Numerical Results

Wavelet Transform

Fig.: Nonsparse image and its wavelet coefficient(sparsity 75%)
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Some Numerical Results

Wavelet Transform

Fig.: MSE(Left) vs haar(Right). Reconstruction with 45 projections.
Detector/Image ratio=4.
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