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» Context: limited data reconstruction via the differentiated
backprojection (DBP).

» Background: asymptotic behaviour of the SVD of the truncated
Hilbert transform.

» Stability estimates for the inversion.



Limited data reconstruction via the differentiated backprojection
(DBP)

Consider the 2D Radon transform of a smooth function f, with the usual
parallel beam parameterization

§(.0) = (RN(s.6) = [ dl f(su™(@) +1u(6)) : u(6) = (~sindycos)

and the backprojection of its radial derivative over a 180 degree interval:

b(x = (x,y)) = /0 d¢ { ag(ai = }SX.UL(@

Then one has the fundamental DBP relation

b(x,y) = (Hi, F)(x,y) = / dy' XY )




b(x=(x,y)):/o“d¢{@}

s=x-uk ()
1 * f(x,y
bx,y) = (#, Nxy) = v [y L)

» Similar results for fan-beam data and for cone-beam data.

Reduces 2D or 3D problem to a family of 1D inversions of the Hilbert
transform.

Gelfand and Graev 1991, Finch 2002, Zou et al 2004, Noo et al 2005.
Allows accurate reconstruction from limited tomographic data sets.

Generalization: DBP over interval less than 180 degrees — sum of two
Hilbert transforms.
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The limited data allow calculating the DBP within FOV.

> Left: supp(f) = (a2,a3) C FOV = (a1, as) = closed form inversion of the
finite Hilbert transform (Tricomi etc..)

> Right: supp(f) = (a2, as) overlaps with the FOV = (a1, a3): no closed
form inversion but uniqueness and stability within part of the FOV
(Defrise, Noo, Clackdoyle,Kudo 2006), Truncated Hilbert transform.



Example with full noise-free data. Left: FBP reconstruction. Center: the DBP.
Right: inverse finite Hilbert transform along each line x = cst. Grey scale:
0.9,1.15.

» The stability for noise is similar to FBP: same backprojection, and filters
have same behaviour : |v| = |iv|.



Truncated data. Top left: Shifted phantom and FOV. Top right: fan-beam sinogram and FOV. Bottom: SART reconstruction, 200
iterations, v = 0.25. Left: scale (0, 2). Center: scale (0.9, 1.15). Right: inverse finite Hilbert transform along each line x = cst. Grey

scale: 0.9,1.15



Why is the SVD important ?
The generalized solution of a linear inverse problem g = Hf is

f"i':z:<gn7g>f;7

On
n

with gn, fp, 0n the SVD of the operator (or matrix) H:

Hf, = ongn

*

-

onfn



» Context: limited data reconstruction via the differentiated backprojection
(DBP).

> Background: asymptotic behaviour of the SVD of the truncated Hilbert
transform.

> Stability estimates for the inversion.



SVD of the finite Hilbert transform ; -2, = —1,2; =2, = 1).

11 From now on, f(x) is a 1D function !!

Consider HF L2(-1,1) — L2,(—1,1), with weighted norm

IFIP = [, dylF(y)Pw(y) with w(y) = 1//T—y?%:
("/F'r)(X):%P.v./IM —1<x<1

1 y—x -

The singular system is well-known (Tricomi):

> o,=1n=012,-

> £(x) = /277 /I = 37 Un(x)

> g,,(X \/2/7 Tn+1(X

> Hefy, = ongn, HEgn = onfa, n=0,1,2,---, and HETo =0
with Up, Ty the Chebyshev polynomials: Tp(x) = cosnf ; Un(x) = 3200 ith o — cos0

sin

(1)



Asymptotic of the SVD of the truncated Hilbert transform.

Consider the truncated Hilbert problem for Hr : L*(F) — L*(G), with
F =(az,a4), G = (a1,a3), and a1 < a» < a3 < as:

a
(HTf)(x):lp.v./ fWdr <y < s,
T m VX

SVD: g, € L*(a1,a3), fa € L*(a2,a4) and Hrf, = ongn for n € Z, a5 > opt1.
> Spectral properties: Al-Aifari and Katsevich (SIAM Math Anal 2014)
> Asymptotic (for n — +o00): Al-Aifari, MD, Katsevich submitted.

» Technique used by Katsevich (Inv Prob 2010, 2011) and Katsevich and
Tobvis (Inv Prob 2012) for the interior Hilbert transform where G C F.



Main tools

v

A 2nd order differential operator L which commutes with Hr and hence
has the same singular functions.

» The characterization of the behaviour of the solutions of Lf = Af, A€ C

for x — af

» The WKB asymptotic form of these solutions for large |A|, and the

asyptotic form as x — aji.

» Characterization of the behaviour of f, and g, for x — aji

Enforcing these conditions restricts the values of A to a countable set.

Similar approaches used for the Slepian-Pollack problem (extrapolation of band-limited signals, 1960's), the limited-angle Radon transform

(Davison and Grunbaum 1980), and the finite Laplace transform (Bertero, Grunbaum, Rebolla 1986).



The differential operator,

L(x, d)ib(x) == (P(x)¢(x)) +2(x — p)*t()

where P(x) =[]} (x — ;) and p = :

; aj commutes with Hr.

4
j=1

= H7Hr and L have the same singular functions.

® a1, ap, a3, as are regular singular points = for any A € C the solutions to
(L —A)ip = 0 in a neighborhood of a; or a; are linear combinations of

Pi(x) = Z bi(x — a;y

Ua(x) = S dh(x — @) + Infx — aifua(x)

Jj=0



What can be said of the behaviour of the singular functions
fo € L%(a2,a4) and g, € L?(ay,a3) of Hr ?

First note that if f, is bounded at a,, then

L[ h)dy
Hrf, = —p.v. — =
(i) = e [ B
as _ _
~ L [N 1l
™ o y —x ™ |x — a2
———

has a log singularity at x = a».



What can be said of the behaviour of the singular functions
fn € L%(a2,a4) and g, € L?(ay,a3) of Hr ?

fa(x) = (1/0a)(H7gn)(x) is analytic outside (a1, a3) = f,(x) bounded in
asg.

fa(x) is bounded at a». Indeed if it had a log singularity at a then
gn(x) = (1/0n)(Hrf)(x) would not be bounded or have a log singularity
there.

fa(x) being bounded at a2, gn(x) = (1/04)(Hr1)(x) has a log singularity
there.

the log singularities of g, at aj and at a, must be matched otherwise
fo(x) = (1/0n)(H7&n)(x) could not be bounded there

= close to a2 gn(x) = gn,1(x) + gn,2(x) log |x — a2]

with gn 1(x) and gn2(x) continuous.



f, € L%(a2,a4) and g, € L?(ay,a3) of HT ?

Supp(g)
— Supp(f) N
< >
a, a, EN a, °
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What can be said of the behaviour of the singular functions

Large o ~ 1
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Example for a; = 0,a, = 3,a3 = 6,a4 = 12. Blue: g, .

Small o, 2> 0

Red: f,.



Summary of the properties of 1, and g,

fa(x) bounded in a, and a4, and log singularity in as.
gn(x) bounded in a; and as, and log singularity in a»

the log singularity of g, must be matched on a3 and a; , idem for f, at as.

vV v vv

f,» and g, are solutions of Lo = \¢

= Enforcing these conditions for X large leads to a quantization

Vs = ;—” +O(n YY) p=1,23,.

= Asymptotic of the singular values obtained as (essentially) ||H77||/||f]]:

op = 2e K (14 0(n7V?)), 0= 0.

H . [22 1 . [22 1
with K_:= [~ \/T(X)dx and K, = fal 0 dx.

» Similar derivation for the asymptotic o_, — 1.




Details on the quantification of A\

e The WKB approximation of the solutions for large |A| of the eigenequation
(Lo)(x) = A ¢(x) = (P(x)¢'(x))" +2(x — u)*d(x) — Ab(x) =0
where P(x) =]} ,(x — a)) and p =}

; aj are linear combinations of

4
j=1

1 +vxfz

dg
—— —m /2
P(z)1/% ¢ VRS (14 O(IA7™2))

$+(2)

with uniform accuracy in a region of C excluding neighborhoods of the a;.
o Close to the a; the solutions are given in terms of Bessel functions.

analytic continuation
glx+iy)

\Jo | g(x) from WKB 1o WKB
a a; a;

matching with J, matching with J, Y,
requiring boundedness
of Re g(x+i0)



Results: singular values

on =2e " (14 0(nTHP)) =0

0_n= /1 - 4e=2K=/Ke (14 O(n=1/249)) - 1

~10F “1ob

200 20t /

—a0f

a; = 0,ay = 3,a3 = 6, a4 = 12. Logarithmic plot of the asymptotic (red line) and numerical values (blue dots) of the singular values

op tending to zero (left) and 1 — o2 for the singular values o _, tending to 1 (right). Numerical value: Mathematica.

Conclusion: the asymptotic expressions are accurate even for small |n|.
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Results: singular functions

4 B
oo v \,/

—0.10f

a; =0,ap =3,a3 = 6, a4 = 12. Plot (left) and logarithmic plot (right) of the singular function gg. Asymptotic form (red line) and

numerical values (blue line). Numerical value: Mathematica.

Conclusion: the asymptotic expressions are accurate even for small |n|.



» Context: limited data reconstruction via the differentiated backprojection
(DBP).

> Background: asymptotic behaviour of the SVD of the truncated Hilbert
transform.

> Stability estimates for the inversion.

Inverse problems where o, decays exponentially to O are severely ill-posed and
untractable in practice, they lead typically to

C

reconstruction error ~ ————
| log noise|
unless very strong prior knowledge is available (e.g. sparsity !).

Examples: backward heat equation, extrapolation of band-limited signals, etc.



Is there then any hope for the truncated Hilbert transform ?
Yes, as shown by the numerical evidence...... but Why 7

Answer: because the singular functions f, for small o, are small within the
overlap segment (a2, a3) = we expect good stability within the overlap
segment, hence stable ROI reconstruction.
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a; =0,ay = 3,a3 = 6, a4 = 12. Blue: gp, red: fy. Left: large singular value oy ~ < 1. Right: small singular value oy ~> 0

How does the stability degrade as x — a; 7



Remove a small neighborhood p > 0 at edge of ROl and study stability on

(a2, 33 — ). We use the asymptotic of f, to show that

az—p ) 1/2 1 s _1/246
||fH (ap,a3—p) — <L2 dX|fn(X)‘ ) = ﬁe ® (1—|— O(n ))

Wlthﬂu:% a3— #ﬁNCStI

R A S A

o4 =7.70x 1077 o6 = 5.04 x 10— 10

oy =1.13x 1073
= (3, 6) where the Hilbert transform is known.

Singular functions f. Note the decreasing amplitude within the overlap ROI (a3, a3)



Stability of the inversion of the truncated Hilbert transform
regularized by truncated SVD.

Let

> fo € L?(a2,a4) be some object, and we know that ||fex|| < E for some E.
» gow = Hrfex € L?(a1, a3) be the noise-free data.
> g be noisy data such that ||g — gex|| < & for some noise level § > 0.

Problem: find an estimate of f.c on some interval a> < x < a3 — p, with a small
©>0.

Consider the truncated SVD reconstruction fi; with cut-off index M:

M 1
fu = Z < g,8n > U—f,,

n=—oo



The reconstruction error is

M
1
fM_feX = Z <g gex,gn> if - Z <ge><7gn ifn
—— n=M-+1 In
M 1 0o
= > <g-ggn > fom > <fafo>f,
n=—o00 Tn n=M+1

Statistical error Systematic error

where we used < gex, &n >=< H1fex,8n >=< fox, H7gn >= 01 < fex, fn >.
Using the triangular inequality and all assumptions,

|1 = Foxl| a3y < A ™M + ECe™

with a = 7K, /K_ and B, ~ Cst \/jx the decay rates of o, and of ||f,]|

(22,33 —1)



i1 — Fox|(2p,05— ) < OA™ e + EC eV

Minimize w.r.t. the SVD cut-off = M(J) = o _:5 log (EA(SCO;:/BM>
n

= Stability estimate

a/(But+a) sBu/(Buta) 60
||fM(6) 7,:8XH(32Y&37M) <W,E /(Buta) 5Bu/(Bute) 020

Holder continuity

The inversion is regularized.



Conclusion
i) = Foxll(ap a5 < Wy £/ P/ Bz 228 g

» Holder continuity: error ~ (noise)” typical of mildly ill-posed problems
despite the exponential decay of o, ~ e~ *".

> But this holds for the error within the segment (a2, a3 — u) where the
Hilbert transform is known, minus some small neighborhood .

» The power decreases as ) = 3, /(B,. + o) ~ /i for small p.
> Result obtained for TSVD but it only depends on the used prior constraint
||fex|| < E. Same dependence for Tikhonov regularization etc.....
Open questions

> Stability bounds for other prior constraint, e.g. TV (fex) < E ?
Preliminary results by Al-Aifari and Steinberger.

» Our bound is pessimistic when the ROl is far from the edge,
a» < a3 — pu < as, since our 7 — 1/2 whereas one expects n — 1.
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Thank you !
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