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I Context: limited data reconstruction via the differentiated
backprojection (DBP).

I Background: asymptotic behaviour of the SVD of the truncated
Hilbert transform.

I Stability estimates for the inversion.



Limited data reconstruction via the differentiated backprojection
(DBP)

Consider the 2D Radon transform of a smooth function f , with the usual
parallel beam parameterization

g(s, φ) = (Rf )(s, φ) =

∫
dl f (s u⊥(φ) + l u(φ)) ; u(φ) = (− sinφ, cosφ)

and the backprojection of its radial derivative over a 180 degree interval:

b(x = (x , y)) =

∫ π

0

dφ

{
∂g(s, φ)

∂s

}
s=x·u⊥(φ)

Then one has the fundamental DBP relation

b(x , y) = (H1y f )(x , y) =
1

π
p.v .

∫ ∞
−∞

dy ′
f (x , y ′)

y − y ′



b(x = (x , y)) =

∫ π

0

dφ

{
∂g(s, φ)

∂s

}
s=x·u⊥(φ)

b(x , y) = (H1y f )(x , y) =
1

π
p.v .

∫ ∞
−∞

dy ′
f (x , y ′)

y − y ′

I Similar results for fan-beam data and for cone-beam data.

I Reduces 2D or 3D problem to a family of 1D inversions of the Hilbert
transform.

I Gelfand and Graev 1991, Finch 2002, Zou et al 2004, Noo et al 2005.

I Allows accurate reconstruction from limited tomographic data sets.

I Generalization: DBP over interval less than 180 degrees → sum of two
Hilbert transforms.
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The limited data allow calculating the DBP within FOV.

I Left: supp(f ) = (a2, a3) ⊂ FOV = (a1, a4)⇒ closed form inversion of the
finite Hilbert transform (Tricomi etc..)

I Right: supp(f ) = (a2, a4) overlaps with the FOV = (a1, a3): no closed
form inversion but uniqueness and stability within part of the FOV
(Defrise, Noo, Clackdoyle,Kudo 2006), Truncated Hilbert transform.



Example with full noise-free data. Left: FBP reconstruction. Center: the DBP.
Right: inverse finite Hilbert transform along each line x = cst. Grey scale:
0.9, 1.15.

I The stability for noise is similar to FBP: same backprojection, and filters
have same behaviour : |ν| = |iν|.



Truncated data. Top left: Shifted phantom and FOV. Top right: fan-beam sinogram and FOV. Bottom: SART reconstruction, 200

iterations, α = 0.25. Left: scale (0, 2). Center: scale (0.9, 1.15). Right: inverse finite Hilbert transform along each line x = cst. Grey

scale: 0.9, 1.15



Why is the SVD important ?

The generalized solution of a linear inverse problem g = Hf is

f † =
∑
n

< gn, g >

σn
fn

with gn, fn, σn the SVD of the operator (or matrix) H:

Hfn = σngn

H∗gn = σnfn



I Context: limited data reconstruction via the differentiated backprojection
(DBP).

I Background: asymptotic behaviour of the SVD of the truncated Hilbert
transform.

I Stability estimates for the inversion.



SVD of the finite Hilbert transform (a1 = a2 = −1, a3 = a4 = 1).

!! From now on, f(x) is a 1D function !!

Consider HF : L2
w (−1, 1)→ L2

w (−1, 1), with weighted norm
||f ||2 =

∫ 1

−1
dy |f (y)|2w(y) with w(y) = 1/

√
1− y 2:

(HF f )(x) =
1

π
p.v .

∫ 1

−1

f (y)dy

y − x
− 1 ≤ x ≤ 1 (1)

The singular system is well-known (Tricomi):

I σn = 1, n = 0, 1, 2, · · ·
I fn(x) =

√
2/π

√
1− y 2 Un(x)

I gn(x) = −
√

2/πTn+1(x)

I HF fn = σngn, H∗F gn = σnfn, n = 0, 1, 2, · · · , and H∗F T0 = 0

with Un, Tn the Chebyshev polynomials: Tn(x) = cos nθ ; Un(x) =
sin(n+1)θ

sin θ
with x = cos θ



Asymptotic of the SVD of the truncated Hilbert transform.

Consider the truncated Hilbert problem for HT : L2(F)→ L2(G), with
F = (a2, a4), G = (a1, a3), and a1 < a2 < a3 < a4:

(HT f )(x) =
1

π
p.v .

∫ a4

a2

f (y)dy

y − x
a1 ≤ x ≤ a3
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SVD: gn ∈ L2(a1, a3), fn ∈ L2(a2, a4) and HT fn = σngn for n ∈ Z , σn ≥ σn+1.

I Spectral properties: Al-Aifari and Katsevich (SIAM Math Anal 2014)

I Asymptotic (for n→ ±∞): Al-Aifari, MD, Katsevich submitted.

I Technique used by Katsevich (Inv Prob 2010, 2011) and Katsevich and
Tobvis (Inv Prob 2012) for the interior Hilbert transform where G ⊂ F .



Main tools

I A 2nd order differential operator L which commutes with HT and hence
has the same singular functions.

I The characterization of the behaviour of the solutions of Lf = λf , λ ∈ C
for x → a±j

I The WKB asymptotic form of these solutions for large |λ|, and the
asyptotic form as x → a±j .

I Characterization of the behaviour of fn and gn for x → a±j
I Enforcing these conditions restricts the values of λ to a countable set.

Similar approaches used for the Slepian-Pollack problem (extrapolation of band-limited signals, 1960’s), the limited-angle Radon transform

(Davison and Grunbaum 1980), and the finite Laplace transform (Bertero, Grunbaum, Rebolla 1986).



The differential operator,

L(x , dx)ψ(x) := (P(x)ψ′(x))′ + 2(x − µ)2ψ(x)

where P(x) =
∏4

j=1(x − aj) and µ = 1
4

∑4
j=1 aj commutes with HT .

⇒ H∗THT and L have the same singular functions.

• a1, a2, a3, a4 are regular singular points ⇒ for any λ ∈ C the solutions to
(L− λ)ψ = 0 in a neighborhood of a+

i or a−i are linear combinations of

ψ1(x) =
∞∑
j=0

bj(x − ai )
j

ψ2(x) =
∞∑
j=0

dj(x − ai )
j + ln |x − ai |ψ1(x)



What can be said of the behaviour of the singular functions
fn ∈ L2(a2, a4) and gn ∈ L2(a1, a3) of HT ?

First note that if fn is bounded at a2, then

(HT fn)(x) =
1

π
p.v .

∫ a4

a2

fn(y)dy

y − x

=
1

π
p.v .

∫ a4

a2

(fn(y)− fn(a2))dy

y − x
+ fn(a2)

1

π
log
|a4 − x |
|x − a2|︸ ︷︷ ︸

has a log singularity at x = a2.



What can be said of the behaviour of the singular functions
fn ∈ L2(a2, a4) and gn ∈ L2(a1, a3) of HT ?

I fn(x) = (1/σn)(H∗Tgn)(x) is analytic outside (a1, a3) ⇒ fn(x) bounded in
a4.

I fn(x) is bounded at a2. Indeed if it had a log singularity at a+
2 then

gn(x) = (1/σn)(HT fn)(x) would not be bounded or have a log singularity
there.

I fn(x) being bounded at a2, gn(x) = (1/σn)(HT fn)(x) has a log singularity
there.

I the log singularities of gn at a+
2 and at a−2 must be matched otherwise

fn(x) = (1/σn)(H∗Tgn)(x) could not be bounded there

⇒ close to a2 gn(x) = gn,1(x) + gn,2(x) log |x − a2|
with gn,1(x) and gn,2(x) continuous.



What can be said of the behaviour of the singular functions
fn ∈ L2(a2, a4) and gn ∈ L2(a1, a3) of HT ?
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Example for a1 = 0, a2 = 3, a3 = 6, a4 = 12. Blue: gn . Red: fn.



Summary of the properties of fn and gn

I fn(x) bounded in a2 and a4, and log singularity in a3.

I gn(x) bounded in a1 and a3, and log singularity in a2

I the log singularity of gn must be matched on a+
2 and a−2 , idem for fn at a3.

I fn and gn are solutions of Lφ = λφ

⇒ Enforcing these conditions for λ large leads to a quantization

√
λn =

nπ

K−
+ O(n−1/2+δ) n = 1, 2, 3, · · ·

⇒ Asymptotic of the singular values obtained as (essentially) ||HT fn||/||fn||:

σn = 2e−nπK+/K−(1 + O(n−1/2+δ)), n→∞.

with K− :=
∫ a2

a1

1√
−P(x)

dx and K+ :=
∫ a2

a1

1√
−P(x)

dx .

I Similar derivation for the asymptotic σ−n → 1.



Details on the quantification of λ

• The WKB approximation of the solutions for large |λ| of the eigenequation

(Lφ)(x)− λ φ(x) = (P(x)φ′(x))′ + 2(x − µ)2φ(x)− λΦ(x) = 0

where P(x) =
∏4

j=1(x − aj) and µ = 1
4

∑4
j=1 aj are linear combinations of

φ̂±(z) =
1

P(z)1/4
e
±
√
λ
∫ z
a1

dξ√
P(ξ)
(
1 + O(|λ|−η1/2)

)
with uniform accuracy in a region of C excluding neighborhoods of the aj .
• Close to the aj the solutions are given in terms of Bessel functions.



Results: singular values

σn = 2e−nπK+/K−(1 + O(n−1/2+δ)) → 0

σ−n =
√

1− 4e−2nπK−/K+ (1 + O(n−1/2+δ)) → 1
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a1 = 0, a2 = 3, a3 = 6, a4 = 12. Logarithmic plot of the asymptotic (red line) and numerical values (blue dots) of the singular values

σn tending to zero (left) and 1 − σ2
−n for the singular values σ−n tending to 1 (right). Numerical value: Mathematica.

Conclusion: the asymptotic expressions are accurate even for small |n|.



Results: singular functions

1 2 3 4 5 6

-0.10

-0.05

0.05

0.10

0.15

0.20

1 2 3 4 5 6

-20

-15

-10

-5

0

a1 = 0, a2 = 3, a3 = 6, a4 = 12. Plot (left) and logarithmic plot (right) of the singular function g6. Asymptotic form (red line) and
numerical values (blue line). Numerical value: Mathematica.

Conclusion: the asymptotic expressions are accurate even for small |n|.



I Context: limited data reconstruction via the differentiated backprojection
(DBP).

I Background: asymptotic behaviour of the SVD of the truncated Hilbert
transform.

I Stability estimates for the inversion.

Inverse problems where σn decays exponentially to 0 are severely ill-posed and
untractable in practice, they lead typically to

reconstruction error ' C

| log noise|

unless very strong prior knowledge is available (e.g. sparsity !).

Examples: backward heat equation, extrapolation of band-limited signals, etc.



Is there then any hope for the truncated Hilbert transform ?
Yes, as shown by the numerical evidence...... but Why ?

Answer: because the singular functions fn for small σn are small within the
overlap segment (a2, a3) ⇒ we expect good stability within the overlap
segment, hence stable ROI reconstruction.
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a1 = 0, a2 = 3, a3 = 6, a4 = 12. Blue: gn , red: fn . Left: large singular value σn '< 1. Right: small singular value σn '> 0.

How does the stability degrade as x → a−3 ?



Remove a small neighborhood µ > 0 at edge of ROI and study stability on
(a2, a3 − µ). We use the asymptotic of fn to show that

||fn||(a2,a3−µ) =

(∫ a3−µ

a2

dx |fn(x)|2
)1/2

=
1√
nπ

e−βµn (1 + O(n−1/2+δ))

with βµ = π
K−

∫ a3

a3−µ
dt√
P(t)
' Cst

√
µ
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Singular functions fn . Note the decreasing amplitude within the overlap ROI (a2, a3) = (3, 6) where the Hilbert transform is known.



Stability of the inversion of the truncated Hilbert transform
regularized by truncated SVD.

Let

I fex ∈ L2(a2, a4) be some object, and we know that ||fex || ≤ E for some E .

I gex = HT fex ∈ L2(a1, a3) be the noise-free data.

I g be noisy data such that ||g − gex || ≤ δ for some noise level δ > 0.

Problem: find an estimate of fex on some interval a2 ≤ x ≤ a3 − µ, with a small
µ > 0.

Consider the truncated SVD reconstruction fM with cut-off index M:

fM =
M∑

n=−∞

< g , gn >
1

σn
fn



The reconstruction error is

fM − fex =
M∑

n=−∞

< g − gex , gn >
1

σn
fn −

∞∑
n=M+1

< gex , gn >
1

σn
fn

=
M∑

n=−∞

< g − gex , gn >
1

σn
fn︸ ︷︷ ︸

Statistical error

−
∞∑

n=M+1

< fex , fn > fn︸ ︷︷ ︸
Systematic error

where we used < gex , gn >=< HT fex , gn >=< fex ,H
∗
Tgn >= σn < fex , fn >.

Using the triangular inequality and all assumptions,

||fM − fex ||(a2,a3−µ) ≤ δA−1eαM + ECµe−βµM

with α = πK+/K− and βµ ' Cst
√
µ the decay rates of σn and of ||fn||(a2,a3−µ).



||fM − fex ||(a2,a3−µ) ≤ δA−1eαM + ECµe−βµM

Minimize w.r.t. the SVD cut-off ⇒ M(δ) =
1

α + βµ
log

(
EACµβµ
δα

)
⇒ Stability estimate

||fM(δ) − fex ||(a2,a3−µ) ≤Wµ Eα/(βµ+α) δβµ/(βµ+α)︸ ︷︷ ︸
Holder continuity

δ→0−→ 0

The inversion is regularized.



Conclusion

||fM(δ) − fex ||(a2,a3−µ) ≤Wµ Eα/(βµ+α)δβµ/(βµ+α) δ→0−→ 0

I Hölder continuity: error ' (noise)η typical of mildly ill-posed problems
despite the exponential decay of σn ' e−αn.

I But this holds for the error within the segment (a2, a3 − µ) where the
Hilbert transform is known, minus some small neighborhood µ.

I The power decreases as η = βµ/(βµ + α) ∼ √µ for small µ.

I Result obtained for TSVD but it only depends on the used prior constraint
||fex || ≤ E . Same dependence for Tikhonov regularization etc.....

Open questions

I Stability bounds for other prior constraint, e.g. TV (fex) ≤ E ?
Preliminary results by Al-Aifari and Steinberger.

I Our bound is pessimistic when the ROI is far from the edge,
a2 < a3 − µ� a3, since our η → 1/2 whereas one expects η → 1.



Thank you !


