Analytic reconstruction methods for the
Compton camera

Voichița Maxim

CREATIS, INSA de Lyon, France

Grenoble, September 10-11, 2013
Summary

1. Compton camera: working principle and applications
2. Models for the acquisition process
3. Examples of image reconstruction methods
4. Conclusions
5. Thanks
Summary

1. Compton camera: working principle and applications

2. Models for the acquisition process

3. Examples of image reconstruction methods

4. Conclusions

5. Thanks
Compton camera for SPECT imaging

- **Source of γ particles**: emission point V_0 and initial energy E
- **Scatterer**: first interaction (Compton scattering) at V_1 and energy transmitted to an electron E_1
- **Absorber**: second interaction at V_2 (photoelectric absorption) and energy E_2
- **Projection pattern**: integral on the surface of a cone
The data

A γ particle emitted at V_0 with initial energy E

- is Compton scattered at V_1 where the energy E_1 is transferred to an electron of the scatterer
- then is absorbed by photoelectric effect at the point V_2 from the absorber, where the remaining energy $E_2 = E - E_1$ is deposited.

The diffusion angle, also called Compton angle, is then given by

$$\cos \beta = 1 - \frac{me c^2 E_1}{(E - E_1)E}$$
The data

A γ particle emitted at V_0 with initial energy E

- is Compton scattered at V_1 where the energy E_1 is transferred to an electron of the scatterer
- then is absorbed by photoelectric effect at the point V_2 from the absorber, where the remaining energy $E_2 = E - E_1$ is deposed.

Conversely, the source point V_0 lies on the surface of a cone, the Compton cone, with

- apex V_1
- axis direction $\vec{\Omega}_2 = \frac{\vec{V}_2 \vec{V}_1}{|\vec{V}_2 \vec{V}_1|}$
- half-opening angle β
Applications

- Imaging of polyenergetic sources
- Imaging of sources with energies ~ 1 MeV

Advantages of the Compton camera:
- devoided of mechanical collimator, its sensitivity is superior to the one of the Anger camera by 1-2 orders of magnitude
- 3D imaging with a single camera
Example of application: hadron therapy

Sphere in PMMA irradiated by a proton beam (140 MeV).

Deposited energy

Last interaction of γ particles that escape the phantom.

Conclusions

- Sources of γ particles are imaged,
- with a detector capable to detect particles from arbitrary directions,
- the measured projections being integrals, of the intensity of the source, on conical surfaces.
Summary

1. Compton camera: working principle and applications
2. Models for the acquisition process
3. Examples of image reconstruction methods
4. Conclusions
5. Thanks
Important parameters

Influence of the angle of incidence, referred to as θ:

![Diagram of angle of incidence](image1)

Influence of the distance to the detector:

![Diagram of distance to detector](image2)

Let us denote

- \vec{v} the vector of coordinates of V_1 in the orthogonal frame $Oxyz$,
- \vec{u} the vector of coordinates of an arbitrary point M,
- θ the angle of incidence on the scatterer, $\cos \theta = \frac{(\vec{u} - \vec{v}) \cdot \vec{n}}{\| \vec{u} - \vec{v} \|}$.

The intensity of the source should be weighted by a function

$$h : (\theta, \| \vec{u} - \vec{v} \|) \mapsto h(\theta, \| \vec{u} - \vec{v} \|) = \frac{\cos \theta}{V_1 M_2^2}.$$
Let f be the intensity of the source. The number of γ particles scattered at V_1, with an angle β and absorbed at V_2 is proportional to:

$$C(\vec{u}, \vec{\Omega}_2, \beta) = \int_{\mathbb{R}^3} f(\vec{u}) h(\theta, \|\vec{v} - \vec{u}\|) k(\vec{u}; \vec{v}, \vec{\Omega}_2, \beta) d\vec{u},$$

where $k(\vec{u}; \vec{v}, \vec{\Omega}_2, \beta)$ models the uncertainties on the value of β and may include the Klein-Nishina differential cross-section $K(\cos \beta)$.
Example: no uncertainties and $h(\theta, \| \vec{v} - \vec{u} \|) = 1$

- May be found in [Cree and Bones, 1994], [Basko et al 1998], [Smith 2005].
- The errors on the measures are not accounted for.
- Each point from the scatterer is seen as isolated.

Let us consider spherical coordinates in a local frame with the vertical axis directed by $\vec{\Omega}_2$. For $\phi \in [0, 2\pi)$, let us denote $\vec{\Omega}_1 = \vec{\Omega}_1(\beta, \varphi)$ the generatrices of a Compton cone $C(V_1, V_2, \beta)$. The Compton projections are then:

$$C(\vec{u}, \vec{\Omega}_2, \beta) = K(\cos \beta) \sin \beta \int_0^{2\pi} \int_0^\infty f(\vec{u} + \rho \vec{\Omega}_1) \rho \, d\rho \, d\varphi.$$

Relation to the 3D Radon transform (and redundancy)

Note that with this model,

$$C(\vec{u}, \vec{\Omega}_2, \pi/2) = K(0) R_3(\vec{\Omega}_2, \vec{v}.\vec{\Omega}_2),$$

where R_3 denotes the three-dimensional Radon transform.
Example: no uncertainties and $h(\theta, ||\vec{v} - \vec{u}||) = 1/||\vec{v} - \vec{u}||$

- May be found in [Parra, 2000], [Tomitani and Hirasawa 2002], [Smith 2005].
- The errors on the measures are not accounted for.
- Each point from the scatterer is seen as isolated.

The Compton projections are then:

$$\mathcal{C}(\vec{u}, \Omega_2, \beta) = K(\cos \beta) \sin \beta \int_0^{2\pi} \int_0^\infty f(\vec{v} + \rho \Omega_1)d\rho d\phi,$$

Relation to cone-beam integrals

$$p(\vec{v}, \Omega_1) = \int_0^\infty f(\vec{v} + \rho \Omega_1)d\rho$$

are cone-beam integrals of the object. The Compton projections are in this case sum of cone-beam integrals.
Example: no uncertainties and $h(\theta, \| \vec{v} - \vec{u} \|) = \cos \theta$

- May be found in [Maxim et al., 2009].
- The errors on the measures are not accounted for.
- Each point from the scatterer is seen as isolated.

The Compton projections are then:

$$\mathcal{C}(\vec{v}, \vec{\Omega}_2, \beta) = K(\cos \beta) \int (\vec{u} - \vec{v}) \cdot \vec{\Omega}_2 = \| \vec{u} - \vec{v} \| \cos \beta \ f(\vec{u}) \cos \theta d\vec{u}.$$
Example: The uncertainties are modelled and
\[h(\theta, \| \vec{v} - \vec{u} \|) = \frac{1}{\| \vec{v} - \vec{u} \|^2} \]

- May be found in [Hirasawa and Tomitani, 2003].
- Gaussian model for the uncertainties, \(\beta \in [\beta_1, \beta_2] \),

\[
k(\vec{u}; \vec{v}, \overrightarrow{\Omega}_2, \beta) = K(\cos \beta) \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{(\cos(\vec{u} - \vec{v}, \overrightarrow{\Omega}_2) - \cos \beta)^2}{2(\sigma \sin \beta)^2} \right).
\]

The Compton projections are then:

\[
C(\vec{v}, \overrightarrow{\Omega}_2, \beta) = \int_{\beta_1}^{\beta_2} \left(\int_0^{2\pi} p(\vec{v}, \overrightarrow{\Omega}_1) d\varphi \right) k(\vec{v} + \overrightarrow{\Omega}_2(\tilde{\beta}, 0); \vec{v}, \overrightarrow{\Omega}_2, \beta) \sin \tilde{\beta} d\tilde{\beta},
\]

Relation to cone-beam integrals

The Compton projections are again sum of cone-beam integrals.
Summary

1. Compton camera: working principle and applications
2. Models for the acquisition process
3. Examples of image reconstruction methods
4. Conclusions
5. Thanks
State of the art

- Methods where the 3D Radon projections are calculated: [Basko et al, 1998], [Smith, 2005]
- Methods where the cone-beam projections are calculated: [Parra, 2000], [Tomitani and Hirasawa, 2002], [Hirasawa and Tomitani, 2003]
- Direct inversion: [Cree and Bones, 1994], [Maxim et al, 2009], [Lojacono et al, 2011], [Maxim, 201?]
- Methods using series expansions in spherical harmonics and Lagrange polynomials: [Basko et al, 1998], [Parra, 2000], [Tomitani and Hirasawa, 2002], [Hirasawa and Tomitani, 2003]
- Methods using the Hilbert transform: [Smith, 2005]
- Methods that may be compared to the Fourier-slice theorem and FBP: [Cree and Bones, 1994], [Maxim et al, 2009], [Lojacono et al, 2011], [Maxim, 201?].
[Tomitani and Hirasawa, 2002]

- The Compton projections

\[C(\vec{v}, \Omega_2, \beta) = K(\cos \beta) \sin \beta \int_0^{2\pi} \int_0^\infty f(\vec{v} + \rho \Omega_1) d\rho d\varphi, \]

are sums of cone-beam integrals

\[p(\vec{v}, \Omega_1) = \int_0^\infty f(\vec{v} + \rho \Omega_1) d\rho. \]

- The aim of the method is to calculate, independently for each given \(\vec{v} \), the values \(p(\vec{v}, \Omega_1) \) for \(\Omega_1 \in S \).

- Equivalent to filtering after back-projection on conical surfaces.
[Tomitani and Hirasawa, 2002] : reconstruction of cone-beam projections

The reconstruction formula is:

\[p(\vec{v}, \Omega_1) = \int_{\beta_1}^{\beta_2} \int_S k^{-1}(\Omega_2, \Omega_1), \cos \tilde{\beta}) \mathcal{G}(\vec{v}, \Omega_2, \tilde{\beta}) d\Omega_2 d(\cos \tilde{\beta}), \]

with

\[k^{-1}(s, t) = \frac{1}{4\pi} \sum_{n=0}^{\infty} \frac{2n+1}{H_n} P_n(s)P_n(t), \quad s, t \in [-1, 1] \]

where \(P_n \) are Lagrange polynomials and

\[H_n = \int_{\beta_1}^{\beta_2} K(\cos \beta)P_n^2(\cos \beta)d(\cos \beta). \]
Tomitani and Hirasawa, 2002: Reconstruction of one slice from a spherical source.
With
\[P(\vec{\Omega}_2, \vec{v} \cdot \vec{\Omega}_2) = -\text{p.v.} \int_0^\pi C(\vec{v}, \vec{\Omega}_2, \beta) \frac{1}{\cos \beta} d\beta, \]

one has:
\[P(\vec{\Omega}_2, \ell) = \text{p.v.} \int_{-\infty}^\infty R_3(\vec{\Omega}_2, t) \frac{1}{\ell - t} dt, \]

which is the Hilbert transform of the 3D Radon transform \(R_3(\vec{\Omega}_2, \cdot) \).
[Smith, 2005] : some results

Detector in 4π, deterministic projections:

(a) original image

(b) reconstructed image

slice at $z=0$
slice at $y=0$

(MSc thesis of Hussein Banjak, co-supervised by Rolf Clackdoyle)
\[C(\vec{v}, \vec{\Omega}_2, \beta) = K(\cos \beta) \int (\vec{u} - \vec{v}) \cdot \vec{\Omega}_2 = \parallel \vec{u} - \vec{v} \parallel \cos \beta \]

\[f(\vec{u}) \cos \theta d\vec{u}, \]

\[\vec{\Omega}_2(0, \pi/4), \quad \beta = \pi/3 \]

\[V_1 \text{ in the plane } z = 0 \]

\[\vec{\Omega}_2(\pi/5, \pi/4), \quad \beta = \arcsin(\sqrt{\frac{3}{2}} \cos \frac{\pi}{5}) \]

\[V_1 \text{ in the plane } z = 0 \]
We show that
\[
f(x, y, z) = 2\pi \int_0^{\pi} \int_{-\infty}^{\infty} \left(\int_0^{\infty} \mathcal{P}_{\tau, \delta} f(\rho) J_0(2\pi z \tau \rho) d\tau \right) e^{2i\pi \rho(-x \sin \delta + y \cos \delta)} |\rho|^3 d\rho d\delta,
\]
with
\[
\mathcal{P}_{\tau, \delta} = \frac{1}{K(\cos \beta)} \mathcal{R}_\delta + \frac{\pi}{2} \mathcal{C}(\cdot, \Omega(\alpha, \delta), \beta)
\]
for \(\tau = \frac{\sin \beta}{\sqrt{\cos^2 \alpha - \sin^2 \beta}} \),
and \(J_0 \) the Bessel function.
Summary

1. Compton camera: working principle and applications
2. Models for the acquisition process
3. Examples of image reconstruction methods
4. Conclusions
5. Thanks
Redundancy in the data set

- The image space is three-dimensional.
- The data space is six-dimensional: 3 dof for the apex, 2 dof for the axis, 1 dof for the Compton angle.
- However, for a common acquisition geometry, not all the data are acquired, leading to artifacts in the reconstructed images.
Conclusions

- Several classes of methods were proposed in the literature.
- The Compton data are redundant but ...
- Except for maybe impractical acquisition geometries, all the methods suffer from the absence of a part of the data sets.

Open questions:

- Is there any possibility for a local method, knowing that Compton projections are surface projections like the 3D Radon transform?
- There are several models for the direct problem. Which one would be the best?
Summary

1. Compton camera: working principle and applications
2. Models for the acquisition process
3. Examples of image reconstruction methods
4. Conclusions
5. Thanks
This work was done with the contribution of:

- Xavier Lojacono (PhD student 2010-2013, CREATIS)
- Hussein Banjak (MSc student 2013, CREATIS)
- Estelle Hilaire (PhD student 2012-2015, CREATIS)
- Remy Prost (CREATIS)
- Rolf Clackdoyle (LHC)
- Françoise Peyrin (CREATIS)