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Background & Objective 

 Background 

• Bone microstructure is important to diagnose osteoporosis 

• Requires high resolution CT and a high radiation dose 

 

 Discrete Tomography 

• Reconstruct only a finite number of intensity levels (2 levels for 

binary image) 

• Limited number of views 

• Expected results: low noise, short scanning time 

 

 Objective 

• Develop binary reconstruction methods from a limited number of 

projections for imaging 3D bone microstructure 
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State of Art 

 TV regularization 

• Nonlinear total variation based noise removal algorithms [L.I.Rudin, 

S.Osher, E.Fatemi, 1992] 

• Solving constrained total variation image restoration and reconstruction 

problems via alternating direction methods [MK.Ng, P.Weiss, X.Yuan,2010] 
 

 Level-Set 

• Nonlinear regularization for ill-posed problems with piecewise constant or 

strongly varying solutions [A.Egger, L.Leitao, 2009]  

• On multiple level-set regularization methods for inverse problems  

[A.DeCezaro, A.Leitao, X.C.Ta, 2009] 

• Bone microstructure reconstruction from few projections with level-set 

regularization [B.Sixou, L.Wang, F.Peyrin, 2013] 
 

 Piecewise Constant Level-Set 

• On piecewise constant level-set (PCLS) methods for the identification of 

discontinuous parameters in ill-posed problems [A.DeCezaro, A.Leitao, 

X.C.Tai, 2013] 
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Problem Position 

 Binary Tomography 

 

       𝑅𝑓 = 𝑝𝛿     𝑠. 𝑡. 𝑓 = 𝑓1, 𝑓2, ⋯ , 𝑓𝑛 ∈ 0,1 𝑛  
 

 

 

 

 

 Ill-posed problem: we estimate the discrete image 𝑓 by 

minimization of regularization functional 

 
𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽 𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑑𝑎𝑡𝑎 𝑓 + 𝜆𝐽𝑝𝑟𝑖𝑜𝑟 𝑓  

 

      Data Fidelity:               𝐽𝑑𝑎𝑡𝑎 𝑓 =∥ 𝑅𝑓 − 𝑝𝛿 ∥𝐿2

2    𝑠. 𝑡. ∥ 𝑝 − 𝑝𝛿 ∥𝐿2
< 𝛿 

 

      Prior (TV, LS, etc.):   𝐽𝑝𝑟𝑖𝑜𝑟 𝑓        𝐸𝑥: ∥ 𝐷𝑓 ∥𝐿2

2  

 

 

 

 

 

Measured  

projection data 

Discrete  

Image 

Projection 

Operator 

Binary 

 constraints 

noise level 

(1) 

(2) 
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Total Variation Regularization (TV) 

 Optimization problem (𝑃) : 

 

 

 

 

 Minimization of the augmented Lagrangian by Alternate Direction 

Minimization Method (ADMM) [M.Afonso, J.bioucas-Dias, 

M.Figeiredo, 2009] 

 

 

 ADMM with convex constraints 

 

 

 
 

where 𝜇 is the regularization parameter and 𝛽 is the Lagrangian parameter. 

 

 

𝑃   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝜇

2
∥ 𝑔 − 𝑅𝑓 ∥  +𝐽𝑇𝑉(𝑓)   𝑠. 𝑡. 𝑓 ∈ 0,1 𝑛 

𝑓 = arg min
𝑓

ℒ 𝑓, 𝑔𝑖 , ℎ, (𝜆𝑖) =
𝜇

2
∥ 𝑔 − 𝑅𝑓 ∥2

2 +  [∥ 𝑔𝑖 ∥2 +
𝛽

2
∥ 𝑔𝑖 − 𝐷𝑖𝑓 ∥2

2 −𝜆𝑖
𝑡 𝑔𝑖 − 𝐷𝑖𝑓 ]

𝑖

 

                                                        +
𝛽

2
∥ ℎ − 𝑓 ∥2

2 

𝐽𝑇𝑉 𝑓 =  ∥ 𝐷𝑖𝑓 ∥2
2

𝑖

 

 𝑓 = arg min
𝑓

ℒ 𝑓, 𝑔𝑖 , ℎ, (𝜆𝑖), 𝜆𝐶 =
𝜇

2
∥ 𝑔 − 𝑅𝑓 ∥2

2 +  ∥ 𝑔𝑖 ∥ +
𝛽

2
∥ 𝑔𝑖 − 𝐷𝑖𝑓 ∥2

2 −𝜆𝑖
𝑡 𝑔𝑖 − 𝐷𝑖𝑓

𝑖

 

                                                              +𝐼𝐶 ℎ +
𝛽

2
∥ ℎ − 𝑓 ∥2

2 −𝜆𝐶
𝑡 (ℎ − 𝑓) 

𝐷𝑖  - the discrete gradient operator at pixel 𝑖 

(3) 

(4) 

(5) 
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Total Variation Regularization (TV) 

In this work, with the alternating minimization algorithm, the sequences 

𝑓𝑘 , 𝑔𝑖
𝑘 , ℎ𝑘 , 𝜆𝑖

𝑘 , 𝜆𝐶
𝑘  are constructed with the following iterative scheme:  

For each pixel 𝑖: 

 

 

 The ℎ𝑘 update is: 

 

 
where 𝜋𝐶 is the projection of the convex set C. 

 

 The 𝑓𝑘 update is: 

 

 

 The Lagrange multipliers (𝜆𝑖), 𝜆𝐶  are updated with: 

 

 

 

 

 

 

 

 

𝑔𝑖
𝑘+1 = max{∥ 𝐷𝑖𝑓

𝑘 +
1

𝛽
𝜆𝑖

𝑘 ∥2
2 −

1

𝛽
, 0}

𝐷𝑖𝑓
𝑘 +

1
𝛽

(𝜆𝑖
𝑘)

∥ 𝐷𝑖𝑓
𝑘 +

1
𝛽

𝜆𝑖
𝑘 ∥2

2
 

ℎ𝑘+1 = 𝜋𝐶(𝑓𝑘 +
𝜆𝐶

𝑘

𝛽
) 

( 𝐷𝑖
𝑡𝐷𝑖 +

𝜇

𝛽
𝑅𝑡𝑅 + 𝐼)𝑓𝑘+1 =  𝐷𝑖

𝑡(𝑔𝑖
𝑘+1 −

1

𝛽
𝜆𝑖

𝑘)

𝑖

+
𝜇

𝛽
𝑅𝑡𝑔 + ℎ𝑘+1 −

𝜆𝐶
𝑘

𝛽
𝑖

 

𝜆𝑖
𝑘+1 = 𝜆𝑖

𝑘 − 𝛽 𝑔𝑖
𝑘+1 − 𝐷𝑖𝑓

𝑘+1  

 

𝜆𝐶
𝑘+1 = 𝜆𝐶

𝑘 − 𝛽(ℎ𝑘+1 − 𝑓𝑘+1) 

(6) 

(8) 

(9) 

(7) 
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Level-Set (LS) 

 Hypothesis: 

• 𝑓: Piecewise constant, only two pixel values {0,1} 

It is the characteristic fct of a regular bounded set 

• 𝜃 is the level-set function 

 

𝑓 = 𝐻 𝜃  𝑠. 𝑡. 𝜃 ∈ 𝐻1 Ω  

 
where 𝐻1 Ω  is the first order Sobolev  

Space, with: 

 

𝐻 𝜃 =  
1 𝑖𝑓 𝜃 > 0
0 𝑖𝑓 𝜃 ≤ 0

 

 

• 𝐻 is the Heaviside function 

 Inverse problem theory for piecewise constant functions. 

[Egger et al.(2009 ),De Cezaro et al.(2013)] 

 

q

f=1 

q>0 f=1 

q>0 f=0 

q<0 

(W1) 

(W1) 

(W2) 

Boundary q=0 
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Level-set (LS) 

In the level-set regularization method, the function 𝑓 in binary tomography 

is replaced with a Heaviside distribution 𝜃 ∈ 𝐻1 𝜃  and a level-set 

function 𝜃: 
 

 

 Binary CT: linear problem                Level-set: non-linear problem 

      Find 𝑓 ∈ {0,1}𝑛                                   Find 𝜃 ∈ 𝐻1 Ω  

             𝑅𝑓 = 𝑝𝛿                                               𝑅𝐻 𝜃 = 𝑝𝛿 
 

 

 

 Variational approach: minimize a level-set regularization functional 

𝐸 𝜃 =
𝑅𝐻 𝜃 − 𝑝𝛿 2

2

2
+ F(θ) 

where 𝐹(𝜃) is the regularization term. 

In our work, a T𝑉 − 𝐻1 regularization function is considered: 

 
𝐹 𝜃 = 𝛽1 𝐻(𝜃) 𝑇𝑉 + 𝛽2 𝜃 𝐻1

 

where 𝐻1 is  the first order Sobolev space norm. 

 

(10) 

(11) 
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Level-Set (LS) 

 

𝐹 𝜃 = 𝛽1  𝛻𝐻(𝜃) 𝑑𝑥 + 𝛽2( 𝛻𝜃 𝐿2

2 + 𝜃 𝐿2

2 ) 

 

The regularization parameters 𝛽1, 𝛽2 determine the relative weights of the 

stabilizing terms.  

The first term 𝐻(𝜃) 𝑇𝑉is the Total Variation semi-norm, in the numerical 

implementation, it is necessary to replace the Heaviside function 𝐻 by a 

smoothed approximation: 

 
 

                                         𝐻 𝑥 =
1+2

(𝑒𝑟 𝑓(𝑥 휀) + 1) − 휀  

 
 

The  minimizer of the regularization functional 𝐸 𝜃  can be approximated 

by the minimizer of a smoothed regularization functional 𝐸 (𝜃): 

 

𝐸 𝜃 =
𝑅𝐻 𝜃 − 𝑝𝛿 2

2

2
+ 𝛽1 𝛻𝐻 (𝜃) 𝑇𝑉 + 𝛽2 𝜃 𝐻1

 

 

 

(13) 

(12) 

(14) 

He 

-0.5

0

0.5

1

1.5

-0.5 0 0.5
e 
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Piecewise Constant Level-Set (PCLS) 

The function 𝜃 in binary tomography is replaced with a piecewise function 

𝑓 and the PCLS function [A.DeCezaro et al, 2013]: 
 

Level-set :                                 PC Level-set : 

Find 𝜃 ∈ 𝐻1 Ω                             Find  𝑓 ∈ 𝐿2(Ω) s. t. 𝐾 𝑓 = 𝑓 𝑓 − 1 = 0 

RH θ = pδ                                  𝑅𝑓 = 𝑝𝛿 
 

Minimization of the augmented Lagrangian: 

𝑓 = arg 𝑚𝑖𝑛  𝐿 𝑓, 𝜆 = arg 𝑚𝑖𝑛
∥𝑅𝑓−𝑝𝛿∥2

2

2
+ 𝛽

∥𝐾 𝑓 ∥2
𝐿2(Ω)

2
+  𝜆𝐾 𝑓 + 𝛼 𝑓 𝑇𝑉  𝑠. 𝑡. 𝛼 > 0 

Given 𝛽, the solutions 𝑓∗, 𝜆∗  are obtained when 
𝜕𝐿

𝜕𝑓
= 0,

𝜕𝐿

𝜕𝜆
= 0. 

 The gradient 
𝜕𝐿

𝜕𝑓
 of the Lagrangian w.r.t 𝑓 is given by: 

          𝑅∗ 𝑅𝑓 − 𝑝𝛿 + 𝛽𝐾′∗ 𝑓 𝐾 𝑓 + 𝜆𝐾(𝑓) + 𝛼 𝑑𝑖𝑣(
𝛻𝑓

|𝛻𝑓|
)=0 

 The 𝑓𝑘+1  update is: 

           𝑓𝑘+1 = 𝑓𝑘 −
𝜕𝐿

𝜕𝑓
 

 The Lagrange multiplier 𝜆 update is: 
 

               𝜆𝑘+1 = 𝜆𝑘 − 𝐾(𝑓) 

 

 

 

(16) 

(15) 

(17) 

(18) 
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Numerical Simulations 

Data : experimental bone cross-section (1024)2 acquired with synchrotron 

micro-CT, pixel size: 15 µm 

Selection of a 256x256 ROI 

Ground truth 𝑓∗: FBP reconstruction, 400 proj./ 400 rays per proj. 

 

15mm 
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Numerical Simulations 

(a) (b) 

Fig.1 Ground-truth of disk image and Bone image 

 Simulation details: 

• Additive gaussian noise with standard deviation: 𝜎 

• Variable number of  projection angles: 𝑀=20,50,100… 

• Morozov principle for choice of regularization parameter [V.A.Morozov ,1984] 

• Stopping criterion 

• Study of the evolution of the reconstruction errors 

• Quadratic Mean Square Error 𝐸𝑚 and misclassification rate 𝑀𝑅 with 𝜎 

• Difference maps 
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Reconstruction Images 

(a) TVbox-disk 

𝜎 = 8.55 

𝑀𝑅 = 0.15% 

(b) TVbox-bone 

𝜎 = 6.57 

𝑀𝑅 = 1.79% 

(c) LS-disk 

𝜎 =8.55 

𝑀𝑅 = 0.36% 

(d) LS-bone 

𝜎 =6.57 

𝑀𝑅 = 2.39% 

Fig. 2 Reconstruction images with projection angles 𝑀 = 20 , and 367 X-rays per 

projection. 
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Error Criterions 

 The normalized mean square error 𝐸 between ground-truth image 

𝑓∗ and reconstruction image 𝑓𝑘 at iteration 𝑘 is defined as: 

 

 

 
𝐸𝑚 = min

𝑘
 𝐸 𝑘  , 𝑓𝑚 = arg min

𝑘
𝐸(𝑘) 

 

 The misclassification rate between the ground-truth image 𝑓∗ and final 

binary image 𝑓𝑏 is defined as: 

 

 

 
where 𝑁 is the total number of pixels, 𝑁𝑑 is the number of different pixels between binary image 𝑓𝑏 and 

ground-truth image 𝑓∗. In our work, threshold is 0.5. 

 

 The difference map image  𝑓𝑑𝑖𝑓𝑓 is defined as the difference between 

final binary image 𝑓𝑏 and the ground-truth image 𝑓∗: 

 

𝐸 =
∥ 𝑓𝑘 − 𝑓∗ ∥2

∥ 𝑓∗ ∥2
 

𝑀𝑅 =
𝑁𝑑

𝑁
 

𝑓𝑑𝑖𝑓𝑓 = |𝑓𝑏 − 𝑓∗| (22) 

(20) 

(21) 

(19) 
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Determination of Optimal Regularization Parameter with Morozov Principle 

 To obtain best reconstruction results, it is necessary to choose the optimal 

regularization parameters. Our choice is based on Morozov principle 

[V.A.Morozov ,1984]: 
∥ 𝑅𝑓𝑚(𝜇) − 𝑝𝛿 ∥≈ 𝛿 

 

where 𝛿 is the noise level, 𝛿 can be estimated as 𝛿2 = 𝑀 ⋅ 𝑁𝜎2.  𝑀 is the number of projection angles, 𝑁 is the 

number of X-ray per projection, 𝜇 is the regularization parameter, 𝑚 is the iteration number. 

 TV regularization 

 

 

 

(a) ∥ 𝑅𝑓𝑚(𝜇) − 𝑝𝛿 ∥ (b) ∥ 𝑅𝑓𝑏(𝜇) − 𝑝𝛿 ∥ 

Fig.3  Noise level 𝛿 obtained with different 𝜇   
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Stopping criterion 

 It is necessary to stop the calculation at the best iteration 𝑚. Our choice is 

based on: 
∥ 𝑓𝑘+1 − 𝑓𝑘 ∥

∥ 𝑓𝑘 ∥
< ϵ 

where 𝜖 is a constant.  

 TV regularization 

(a)  Dk = lg (
∥𝑓𝑘+1−𝑓𝑘∥

∥𝑓𝑘∥
) 

(b) Error Evolution 

Fig.4 (a) the evolution of lg (
∥𝑓𝑘+1−𝑓𝑘∥

∥𝑓𝑘∥
); (b) the evolution of normalized error. 

(24) 
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Error evolution with iteration number 

Fig.5  Error evolutions between gray-level reconstruction images and the ground-truth image 
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Quadratic Mean Square Error 𝑬𝒎with 𝝈  

(a) Disk-20p (b) Bone-20p 

Fig.6  The quadratic mean square errors with increase of 𝜎 

(d) Bone-50p 
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Misclassification Rates 𝑴𝑹 with 𝝈 

Fig.7  The misclassification rates with increase of 𝜎 

(c) Disk-50p 

(b) Bone-20p (a) Disk-20p 

(d) Bone-50p 
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Difference Maps: TV 

(e) Diff-bone 

𝜎 = 0 
(f) Diff-bone 

𝜎 = 6.57 

(g) Diff-bone 

𝜎 = 9.85 

(h) Diff-bone 

𝜎 = 19.71 

(b) Diff-disk 

𝜎 = 8.55 

(c) Diff-disk 

𝜎 = 12.82 

(d) Diff-disk 

𝜎 = 25.65 

Fig.8  the difference maps of  TV regularization with box constraints algorithm 

(a) Diff-disk 

𝜎 = 0 
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Difference Maps: LS 

(a) Diff-disk 

𝜎 = 0 

(b) Diff-disk 

𝜎 = 8.55 
(c) Diff-disk 

𝜎 = 12.82 

(d) Diff-disk 

𝜎 = 25.65 

(e) Diff-bone 

𝜎 = 0 

(f) Diff-bone 

𝜎 = 6.57 
(g) Diff-bone 

𝜎 = 9.85 

(h) Diff-bone 

𝜎 = 19.71 

Fig.9  the difference maps of  LS algorithm 
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Conclusions 

Minimum errors: 

 LS and PCLS algorithm convergent faster than TV regularization with 

box constraints. 

 TV algorithm generated the best gray-level reconstruction results. 

Usually, PCLS performs better than LS on disk images, while worse on 

bone images. 

 TV and PCLS give similar misclassification rates on binary images. 

Misclassification rate: 

 In my work, Threshold is set as 0.5. It gives the best binarization 

results. 

Difference maps: 

 From the difference maps of TV and LS,  the reconstruction mistakes 

often occurs at boundary regions. 

 With the increase of noise levels, the different regions between 

reconstruction image and ground-truth image become broader and 

broader. 
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Perspectives 

 Application to 3D bone microstructure data 

 Investigate Stochastic Level-set algorithms 

 Test multi-scale optimization methods  
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