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Background & Obijective Mw

= Background
» Bone microstructure is important to diagnose osteoporosis
» Requires high resolution CT and a high radiation dose

= Discrete Tomography

* Reconstruct only a finite number of intensity levels (2 levels for
binary image)

 Limited number of views

» Expected results: low noise, short scanning time

= Objective

« Develop binary reconstruction methods from a limited number of
projections for imaging 3D bone microstructure
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State of Art Mw

= TV regularization

* Nonlinear total variation based noise removal algorithms [L.I.Rudin,
S.Osher, E.Fatemi, 1992]

« Solving constrained total variation image restoration and reconstruction
problems via alternating direction methods [MK.Ng, P.Weiss, X.Yuan,2010]

= | evel-Set

* Nonlinear regularization for ill-posed problems with piecewise constant or
strongly varying solutions [A.Egger, L.Leitao, 2009]

« On multiple level-set regularization methods for inverse problems
[A.DeCezaro, A.Leitao, X.C.Ta, 2009]

« Bone microstructure reconstruction from few projections with level-set
regularization [B.Sixou, L.Wang, F.Peyrin, 2013]

= Pjlecewise Constant Level-Set

* On piecewise constant level-set (PCLS) methods for the identification of
discontinuous parameters in ill-posed problems [A.DeCezaro, A.Leitao,
X.C.Tai, 2013]
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Problem Position MM

= Binary Tomography

Rf =p? s.t.f=(fufor f) € {01} (1)
Projection Discrete Measured Binary
Operator Image projection data constraints

* |ll-posed problem: we estimate the discrete image f by
minimization of regularization functional

f = argmin J(f) = argmin Jaara(F) + Mprior(f) (2)

Data Fidelity - Jaata () =N Rf —=p® 17, s.t.llp—p° I, < (%

noise level

Prior (TV, LS, etc.): Jprior(f)  Ex:|I Df 112,
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Total Variation Regularization (TV) MM

= Optimization problem (P):

(P) minimize =\l g —Rf I +Jv(f) s.t.f € [0,1]" 3)

Jrv(f) = Z | D;f II5 D; -the discrete gradient operator at pixel i
i

= Minimization of the augmented Lagrangian by Alternate Direction
Minimization Method (ADMM) [M.Afonso, J.bioucas-Dias,

M.Figeiredo, 2009]

F = argmin £(7, (90, b, (1)) =5 1 g~ RF 13+ g3 o +5 1 g0 = Dif 13 ~2£Cg1 ~ D)
f 7 : 2 4)

+80h—F13
=  ADMM with convex constraints

f = argmin L(f, (g;), h, (1), A¢) = ] g—Rf 15 +z [ll g; +E I gi — Dif 15 —25(g; — Dif)]
! i ! i 5)

He(h) + 5 IR — £ 1 —25(h— )

where u is the regularization parameter and S is the Lagrangian parameter.
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Total Variation Regularization (TV) MM

In this work, with the alternating minimization algorithm, the sequences
(£%, gk, k¥, 2%, 2%) are constructed with the following iterative scheme:

For each pixel i:

Dif* + 7 ()

1 1
g¥tt = max{ll D;f* + E(/l{-‘) 12 ——, 0}

B D + 5 (8 13 (©)
= The h* update is:
Ak
REHE = mo (£ + 20 )
where 7t is the projection of the convex set C.
= The f* update is:
u +1 _ + 1 I + Alé
(Z DID; + ERtR +DfkHt = ZD{(g{‘ 1 —EA{-‘) +ERtg + hk+1 — 5 (8)
= The Lagrange multipliers (4;), A, are updated with:
A{.(+1 — Ai( _ ﬂ(glk-l-l _ Difk+1)
9)

/1’5-+1 — /1’5 _ ﬁ(hk+1 _ fk+1)
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Level-Set (LS) Crei?

= Hypothesis:

« f: Piecewise constant, only two pixel values {0,1}
It is the characteristic fct of a regular bounded set
* @ isthe level-set function

f=H(0)s.t.0 € H(Q) Q,)

where H, (Q) is the first order Sobolev
Space, with:

’
(1 if6>0 Boundary 6=0
i) ‘{o ifo<0

 H is the Heaviside function

= Inverse problem theory for piecewise constant functions.
[Egger et al.(2009 ),De Cezaro et al.(2013)]
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Level-set (LS) MM

In the level-set regularization method, the function f in binary tomography
Is replaced with a Heaviside distribution 6 € H;(#) and a level-set

function 9.
= Binary CT: linear problem Level-set: non-linear problem
Find f € {0,1}" Find 6 € H;(Q)
Rf = p® RH(6) = p°

» Variational approach: minimize a level-set regularization functional
|rH®) I,

E0) = -

+ F(6) (10)
where F(0) is the regularization term.
In our work, a TV — H; regularization function is considered:

F(60) = B1lH(O) |7y + B2llOlln, (11)
where H; is the first order Sobolev space norm.
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Level-Set (LS) Crheit*

F(8) = By [IVH(8)Idx + B, (II7OIIZ, + 116112,) (12)

The regularization parameters ,, B, determine the relative weights of the
stabilizing terms.

The first term |H(6)|yis the Total Variation semi-norm, in the numerical
Implementation, it Is necessary to replace the Heaviside function H by a
smoothed approximation:

1+2¢
£

Ho(0) = 22 er f(x/e) + 1) — € > (13)

The minimizer of the regularization functional E(8) can be approximated
by the minimizer of a smoothed regularization functional E.(8):

RH.(8) — p°||”
” € ” 2 4 B1|\VH.(0) |1y + ,32||9"H1

Es(e) =
2 (14)
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Piecewise Constant Level-Set (PCLYS) MM

The function 6 in binary tomography is replaced with a piecewise function
f and the PCLS function [A.DeCezaro et al, 2013]:

Level-set : PC Level-set:
Find 8 € H;(Q)) Find f e L,(Q)s.t.K(f) =f(f—1)=0
RH(6) = p° Rf =p°

Minimization of the augmented Lagrangian:

~ IIRf—p8II§+ IKDIZ L, @)
2

f =argmin L(f,A1) = argmin > + [AK(f) + alflry s.t.a>0 (15)

Given B, the solutions (f*, A*) are obtained when — = O,Z—/L1 = 0.

@
of
= The gradient Z—]Lc of the Lagrangian w.r.t f is given by:

R*(Rf —p%) + BK*(HK(f) + AK(f) + div(%)=0 (16)
= The f**1 update is:

1 F
s == 17)

» The Lagrange multiplier A update is:

At = 2% - K(f) (18)
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Numerical Simulations W

Data : experimental bone cross-section (1024)2 acquired with synchrotron
micro-CT, pixel size: 15 ym

Selection of a 256x256 ROI

Ground truth f*: FBP reconstruction, 400 proj./ 400 rays per proj.




Numerical Simulations

(a) (b)
Fig.1 Ground-truth of disk image and Bone image
= Simulation details:
« Additive gaussian noise with standard deviation:
« Variable number of projection angles: M=20,50,100...
* Morozov principle for choice of regularization parameter [\V.A.Morozov ,1984]
« Stopping criterion
« Study of the evolution of the reconstruction errors
* Quadratic Mean Square Error E,,, and misclassification rate MR with o
» Difference maps



Reconstruction Images

(a) TVbox-disk (b) TVbox-bone (c) LS-disk (d) LS-bone
o =8.55 0 =6.57 o =8.55 o =6.57
MR = 0.15% MR = 1.79% MR = 0.36% MR = 2.39%

Fig. 2 Reconstruction images with projection angles M = 20, and 367 X-rays per
projection.



Error Criterions MM

= The normalized mean square error E between ground-truth image
f*and reconstruction image f* at iteration k is defined as:

_IIfk—f*Ilz 19
FETNR L S
E, = mkin E(k),fm™= argmkinE(k) (20)

= The misclassification rate between the ground-truth image f* and final
binary image f;, is defined as:

MR = N (21)

where N is the total number of pixels, N, is the number of different pixels between binary image f;, and
ground-truth image f™. In our work, threshold is 0.5.

= The difference map image f4;¢; is defined as the difference between
final binary image f; and the ground-truth image f*:

fairr = fo = f7l (22)
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[ 4
Determination of Optimal Regularization Parameter with Morozov PrincW

= To obtain best reconstruction results, it is necessary to choose the optimal
regularization parameters. Our choice is based on Morozov principle

[V.A.Morozov ,1984].
IRF™(w) —p® I~ & (23)

where & is the noise level, § can be estimated as 2 = M - No?. M is the number of projection angles, N is the
number of X-ray per projection, u is the regularization parameter, m is the iteration number.

= TV regularization
TVbox-20p-bone with g=9.85

TVbox-20p-bone with c=9.85
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Fig.3 Noise level § obtained with different u
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Stopping criterion W

= |t is necessary to stop the calculation at the best iteration m. Our choice is
based on:

| FRHt — f
TR

(24)
where € iIs a constant.
= TV regularization
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Fig.4 (a) the evolution of lg(%); (b) the evolution of normalized error.
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Error evolution with 1teration number

PCLS-Bone with 20 projections
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Fig.5 Error evolutions between gray-level reconstruction images and the ground-truth image
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Quadratic Mean Square Error E,,with o MM
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Fig.6 The quadratic mean square errors with increase of o
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Misclassification Rates MR with o MM
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Fig.7 The misclassification rates with increase of o
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Difference Maps: TV

() Diff-disk (b) Diff-disk (c) Diff-disk
cg=0 o = 8.55 o=12.82

(e) Diff-bone (f) Diff-bone (9) Diff-bone
g=20 g = 6.57 o =9.85

(d) Diff-disk
o = 25.65

(h) Diff-bone
g =19.71

Fig.8 the difference maps of TV regularization with box constraints algorithm
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Difference Maps: LS

a) Diff-dis iff-dis ¢) Diff-dis Diff-dis
iff-disk (b) Diff-disk ff-disk d) Diff-disk
og=0 o = 8.55 o=12.82 o = 25.65

-----

(e) Diff-bone () Diff-bone (9) Diff-bone (h) Diff-bone
o=0 o = 6.57 o =9.85 o=19.71

Fig.9 the difference maps of LS algorithm
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Conclusions MM

Minimum errors:

= LS and PCLS algorithm convergent faster than TV regularization with
box constraints.

= TV algorithm generated the best gray-level reconstruction results.
Usually, PCLS performs better than LS on disk images, while worse on
bone images.

= TV and PCLS give similar misclassification rates on binary images.

Misclassification rate:

= In my work, Threshold is set as 0.5. It gives the best binarization
results.

Difference maps:

= From the difference maps of TV and LS, the reconstruction mistakes
often occurs at boundary regions.

= With the increase of noise levels, the different regions between
reconstruction image and ground-truth image become broader and
broader.
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Perspectives W

= Application to 3D bone microstructure data

* |nvestigate Stochastic Level-set algorithms

» Test multi-scale optimization methods
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