

A modified likelihood distribution for bias reduction in lowstatistics PET

<u>K. Van Slambrouck</u>, S. Stute, C. Comtat, M. Sibomana, F.H.P. van Velden, R. Boellaard and J. Nuyts

• Introduction

- Reconstruction in PET
- Bias in MLEM
- Bias reduction
 - NEGML
 - AML
- Experiments
 - Simulation
 - Reconstruction
 - Evaluation
- Results
- Conclusion

Introduction

- Reconstruction in PET
- Bias in MLEM
- Bias reduction
 - NEGML
 - AML
- Experiments
 - Simulation Reconstruction Evaluation
- Results

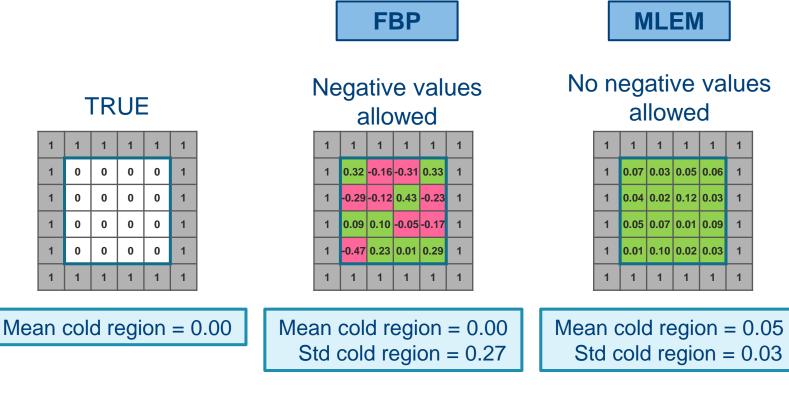
Reconstruction in PET

Filtered back projection FBP	Maximum likelihood expectation maximization MLEM
+ Fast	- Slow
+ Bias-free	 Positive bias (cold regions and noisy data)
 Only basic 'ideal' model (no resolution model) 	+ More complex model (with e.g. resolution effect)
- No priors	+ Based on Poisson model (reduced noise)
	+ Priors

MLEM often superior image quality + less partial volume effects

FBP often used for dynamic studies

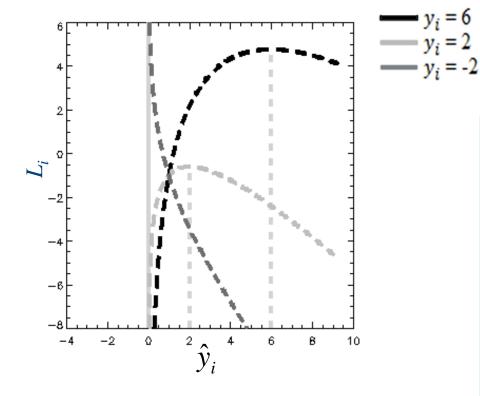
Bias in MLEM


1. Cold regions: activity dependent convergence

$$\Delta \lambda_j = \frac{\lambda_j}{\sum_i c_{ij}} \sum_i c_{ij} \frac{y_i - \hat{y}_i}{\hat{y}_i}$$

$$\hat{y}_i = \sum_i c_{ij} \lambda_j + r_i$$

Bias in MLEM


2. Cold regions + noisy data: non-negativity constraint in image

Bias in MLEM

3. Noisy data: asymmetry of the Poisson likelihood

= 6

$$L = \sum_{i} L_i = y_i \ln \hat{y}_i - \hat{y}_i$$

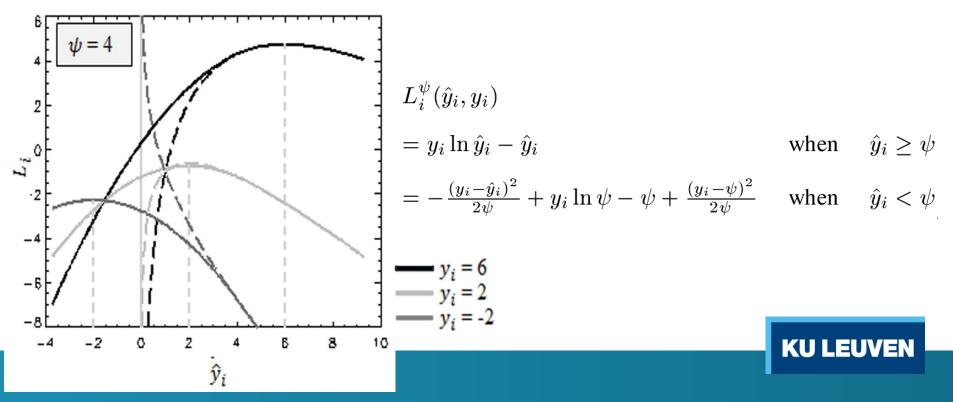
Possible explanation:

The likelihood = gamma distribution

 $Gamma(\hat{y}_i | \alpha, \beta)$

with $\alpha = \hat{y}_i + 1$ and $\beta = 1$

The maximum of this function is y_i The mean is $y_i + 1$


- Introduction
 - Reconstruction in PET
 - Bias in MLEM
- Bias reduction
 - NEGML
 - AML
- Experiments
 - Simulation Reconstruction Evaluation
- Results

NEGML algorithm

- Modified likelihood
 - Poisson for large values
 - Gaussian for low values (symmetric + defined for negative sinogram values)

NEGML algorithm

- Modified likelihood
 - Poisson for large values
 - Gaussian for low values (symmetric + defined for negative sinogram values)
- Negative image voxel values are allowed
- Update not activity dependent (due to gradient ascent likelihood optimization)

$$\Delta \lambda_j = \frac{\sum_i c_{ij} \frac{y_i - \hat{y}_i}{\max(\psi, \hat{y}_i)}}{\sum_i c_{ij} \frac{\sum_k c_{ik}}{\max(\psi, \hat{y}_i)}}$$

<u>Note</u>: extension of existing NEGML algorithm⁽¹⁾, created to obtain more quantitative data without attenuation correction

(1) J. Nuyts et al. "Reducing loss of image quality due to the attenuation artifact in uncorrected PET whole body images." Journal of Nuclear Medicine, 43, pp. 1054-1062, 2002.

AML algorithm

 $\mathsf{ABML}^{(2)}$:

- A_j lower bound for voxel j + bound $\sum_j c_{ij}A_j$ in sinogram
- B_j upper bound for voxel j + bound $\sum_j c_{ij}B_j$ in sinogram

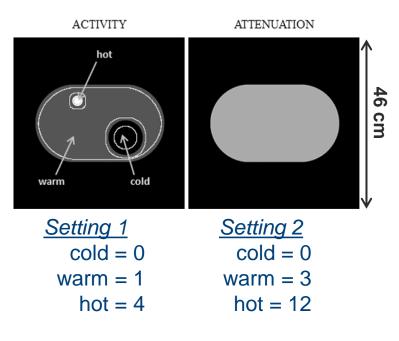
Modified version: AML

- Single lower bound A
- Upper bound $B \to \infty$

$$\Delta \lambda_j = \frac{\lambda_j - A}{\sum_i c_{ij}} \left(\sum_i c_{ij} \frac{y_i - \hat{y}_i}{\hat{y}_i - A \sum_k c_{ik}} \right)$$

Intuitive interpretation: sinogram and image are shifted towards higher values

- Introduction
 - Reconstruction in PET
 - Bias in MLEM
- Bias reduction
 - NEGML
 - AML
- Experiments
 - Simulation
 - Reconstruction
 - Evaluation
- Results
- Conclusion


Simulations

Phantom 1

- 920 x 920
- 200 angles
- 2 phantom settings

Phantom 2

- 400 x 400
- 3 projection settings
- Two dimensional
- Parallel beam
- Attenuation
- Randoms
- Different frame durations (0.05 1000 counts)
- Multiple noise realisations
- Rebinned by 4 after simulation

<u>Setting 1</u>: 100 projection angles <u>Setting 2</u>: 500 projection angles <u>Setting 3</u>: 1000 projection angles

Reconstruction

Reconstruction methods:

- FBP
- MLEM
- NEGML (ψ = 1, 4, 9, 16, 25)
- AML (A = -1, -5, -10, -50, -100)

Random handling

• Precorrection = subtraction of the randoms:

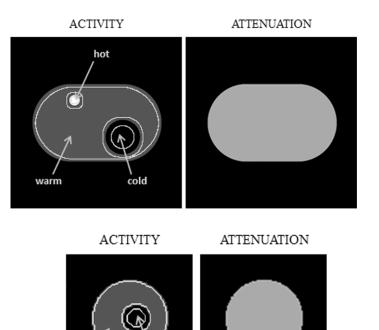
$$y_i \rightarrow y_i - s_i^S$$
 or $y_i \rightarrow y_i - s_i$

Ordinary Poisson

 y_i with randoms estimate $r_i = s_i$ or $r_i = s_i^S$

Shifted Poisson

 $y_i + s_i$ with randoms estimate $r_i = 2s_i$



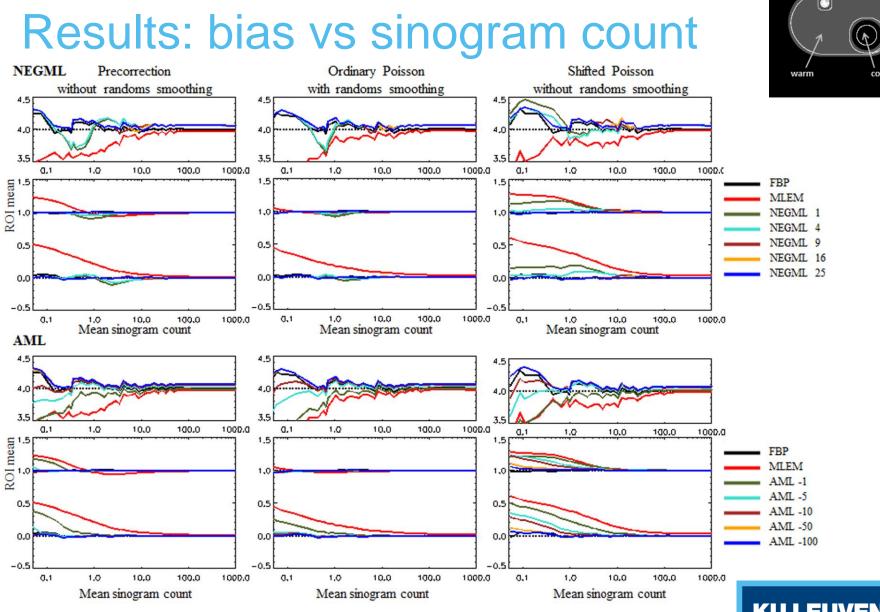
Evaluation

- Mean in each region
- Variance in each region

ROI Mean =
$$\frac{1}{NJ_{\text{ROI}}} \sum_{n=1}^{N} \sum_{j \in \text{ROI}} \lambda_{j,n}$$

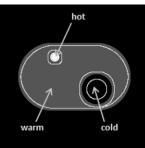
ROI Var =
$$\frac{1}{N} \sum_{n} (\text{ROImean} - \sum_{j \in \text{ROI}} \lambda_{j,n})^2$$

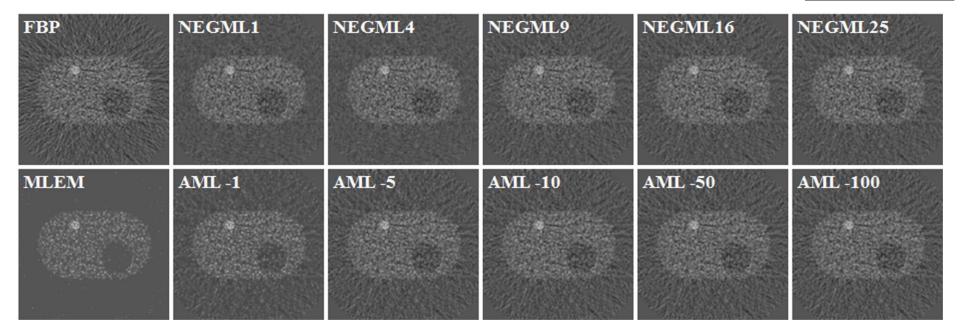
cold

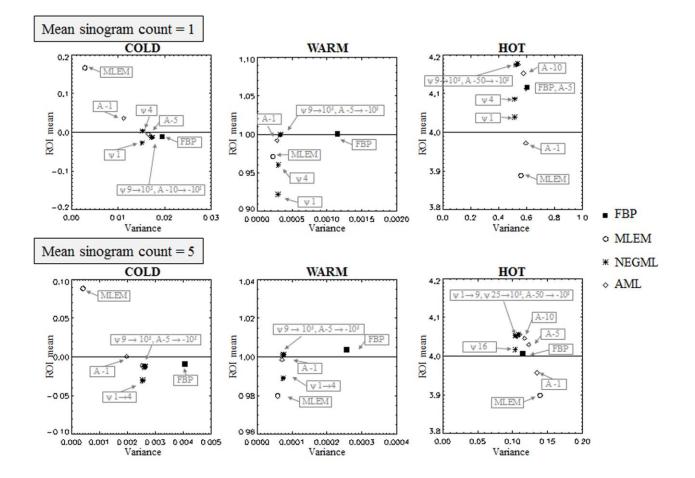

KU LEUVEN

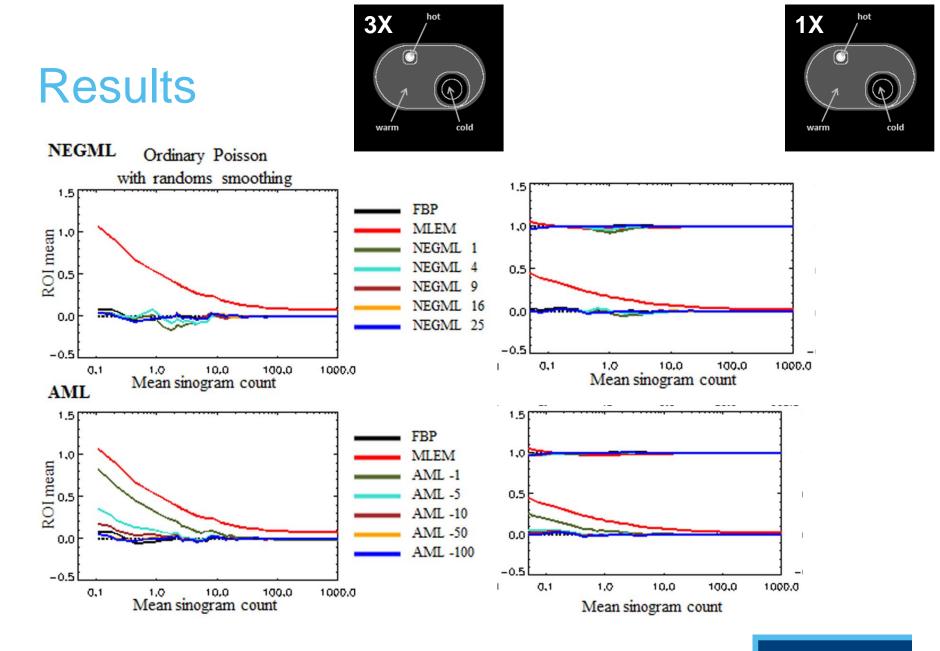
warm

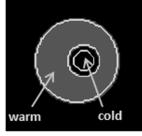
- Introduction
 - Reconstruction in PET
 - Bias in MLEM
- Bias reduction
 - NEGML
 - AML
- Experiments
 - Simulation Reconstruction Evaluation
- Results

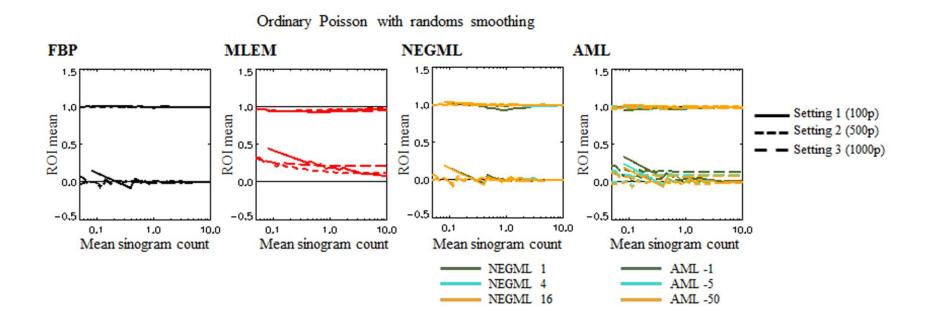





hot cold


Results: reconstructions




Results: bias vs variance

- Introduction
 - Reconstruction in PET
 - Bias in MLEM
- Bias reduction
 - NEGML
 - AML
- Experiments
 - Simulation Reconstruction Evaluation
- Results
- Conclusion

Conclusion

Filtered back projection FBP	Maximum likelihood expectation maximization	Poisson + Gauss Gradient ascent
	MLEM	NEGML
+ Fast	- Slow	- Slow
+ Bias-free	 Positive bias (cold regions and noisy data) 	+ Bias free (for $\psi \ge 16$)
 Only basic 'ideal' model (no resolution model) 	+ More complex model (with e.g. resolution effect)	+ More complex model (with e.g. resolution effect)
- No priors	+ Based on Poisson model (reduced noise)	+ Poisson model is used when possible
		 Increased noise in Gaussian mode
	+ Priors	+ Priors

Conclusion

NEGML	AML
 Sinogram based parameter Independent of application Poisson is still used for high counts Single parameter in dynamic studies 	 Image based parameter Defined in image, effect in sinogram Application dependent Parameter tuning needed in dynamic studies to keep Poisson for higher
	 optimal value that combines low bias and MLEM-look might exist

Thank you!

Questions?

