Spatially Variant Resolution Modelling for Iterative List-Mode PET Reconstruction

Matthew Bickell, Lin Zhou, Johan Nuyts

Medical Imaging Research Centre KULeuven, Belgium

Resolution modelling

Accurate system modelling can improve resolution

In MLEM:

- 1. The forward projection simulates a measurement process
- 2. The resulting projection is compared to the measured data
- 3. The result is backprojected and used as an update

Resolution modelling

A standard approach with MLEM:

Convolve the image with a Gaussian

- before forward projection, and
- after backprojection

microPET FOCUS-220 Gaussian FWHM = 1.3 mm^[1]

[1] Tai, Y., et al, "Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging.", J. Nucl. Med., 46:3, 2005

Positron range

Photon acollinearity

Detector response

Inter-crystal scatter

Positron range

Photon acollinearity

Detector response

Inter-crystal scatter

Positron range

Photon acollinearity

Detector response

Inter-crystal scatter

Photon acollinearity

Detector response

Inter-crystal scatter

Crystal crosstalk

[1] Haber, S. F., et al, "Application of Mathematical Removal of Positron Range Blurring in Positron Emission Tomography", *IEEE Trans. Nuc. Sci.*, 37:3, 1990

Positron range

Photon acollinearity

Detector response

Inter-crystal scatter

Crystal crosstalk

 Haber, S. F., et al, "Application of Mathematical Removal of Positron Range Blurring in Positron Emission Tomography", *IEEE Trans. Nuc. Sci.*, 37:3, 1990
 Shibuya, K., et al, "Annihilation photon acollinearity in PET: volunteer and phantom FDG studies", *Phys. Med. Biol.*, 52:17, 2007

[4] Liang, Z., "Detector response restoration in image reconstruction of high resolution positron emission tomography", *IEEE Trans. Med. Imag.*, 13:2, 1994

Redistribute LORs accordingly

Many redistributed LORs create an effective tube-of-response

Jin, X., et al, "List-mode reconstruction for the Biograph mCT with physics modeling and event-byevent motion correction", *Phys. Med. Biol, 58:16, 2013* Gillam, J., et al, "Simulated one-pass list-mode: an approach to on-the-fly system matrix calculation", *Phys. Med. Biol., 58:7, 2013* Redistributed LOR

The Distributions Positron range convolution

The positron range can be described by:

$$R(x) = Ae^{-x/B} + (1 - A)e^{-x/C}$$

[1] Haber, S. F., et al, "Application of Mathematical Removal of Positron Range Blurring in Positron Emission Tomography", *IEEE Trans. Nuc. Sci.*, 37:3, 1990

The Distributions Detector response function

$$P_{\theta}(s) = \left(1 - e^{-\mu_{c}y(s)}\right) e^{-\mu_{c}h(s) - \mu_{g}g(s)} \left[1 - e^{-\mu_{c}y(s)} \right]^{1}$$

s Length parameter orthogonal to LOR
 y(s) Path length through this crystal
 h(s) Path length through neighbouring crystal
 g(s) Path length through gaps
 μ_c Attenuation of crystals
 μ_g Attenuation of gap material (BaSO₄^[2])

[1] Lecomte, R., et al, "Geometric study of high resolution PET detection system using small detectors", *IEEE Trans. Nuc. Sci.*, 31:1, 1984

[2] Tai, Y-C, et al, "MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging", Phys. Med. Biol., 48, 2003

Crystal width = 1.510 mm Transaxial gap width = 0.120 mm Axial gap width = 0.082 mm

The Distributions Detector response function

The Distributions Acollinearity distribution

The angular deviation is best described by a double Gaussian:

$$Q(\phi) = A_1 e^{-\frac{(\phi - \mu_1)^2}{2\sigma_1^2}} + A_2 e^{-\frac{(\phi - \mu_2)^2}{2\sigma_2^2}}$$
^[1]

А	0.824	0.176
μ (deg)	-0.009	0.007
σ (deg)	0.269	0.116

[1] Shibuya, K., et al, "Annihilation photon acollinearity in PET: volunteer and phantom FDG studies", Phys. Med. Biol., 52:17, 2007

The Distributions Acollinearity distribution

The LOR can be redistributed by either: shifting one endpoint, or...

...shifting both endpoints

The Distributions Acollinearity distribution

The LOR can be redistributed by either:

shifting one endpoint, or...

...shifting both endpoints

Theoretical distribution

Implementation

 LORs are redistributed twice, independently: once for forward projection and once for backprojection
 List-mode MLEM reconstruction with subsets
 LORs are resampled after every iteration

Spatial Variance

- 1. Point sources were measured
- 2. Point sources were simulated
- 3. Simulated point sources were forward projected:
 - A. after convolution with a Gaussian, and,
 - B. using redistributed LORs.
- 4. The sinogram profiles were compared

Spatial Variance

Gaussian convolution
 Redistribution model
 Measurement

250

mhini

250

No resolution modelling

Redistribution

Gaussian convolution

Scan time: 5 minutes Activity: 1.2 mCi of FDG LORs: 150 million

Pixel: 0.4745 mm 10 Iterations , 10 subsets

Summing 10 planes together

R=13cm

5.4cm

μΡΕΤ

FOV

No resolution modelling

Redistribution

Gaussian convolution

Scan time: 5 minutes Activity: 1.2 mCi of FDG LORs: 150 million

Pixel: 0.4745 mm 10 Iterations , 10 subsets

Summing 10 planes together

Pixel: 0.4745 mm 10 Iterations , 10 subsets Scan time: 5 minutes Activity: 1.2 mCi of FDG LORs: 150 million

μΡΕΤ

FOV

R=13cm

5.4cm

Gaussian convolution
Redistribution model
No resolution model

Combining models

Redistribution is used for forward and backprojection Gaussian convolution is applied before forward and after backprojection

10 iterations

μΡΕΤ

FOV

R=13cm

4.2cm

Standard _{mm} Gaussian convolution Combined models

Pixel: 0.4745 mm

Combining models

Redistribution is used for forward and backprojection Gaussian convolution is applied before forward and after backprojection

20 iterations

μΡΕΤ

FOV

R=13cm

4.2cm

Standard Pixel: 0.4745 mm Gaussian convolution Combined models

Combining models

Redistribution is used for forward and backprojection

Gaussian convolution is applied before forward and after backprojection

20 iterations

μΡΕΤ

FOV

R=13cm

4.2cm

Combined models

Pixel: 0.4745 mm

Gaussian convolution

Brain imaging of fully awake, tube-bound rat

Motion data recorded by MicronTracker stereo-optical camera

List-mode data corrected after acquisition and before reconstruction

With redistribution:

- The LORs are redistributed before being motion corrected
- Spatial variance of the model is preserved correctly

R=13cm FOV

Not motion corrected

10 iterations, 10 subsets

Pixel: 0.4745 mm

Redistribution

Gaussian convolution

Scan time: 5 minutes Activity: 1 mCi of FDG LORs: 130 million

Gaussian convolution
Redistribution model

Conclusion

- A spatially variant resolution modelling technique has been introduced
- LORs are randomly redistributed accordingly to probabilistic system response functions
- System matrix is computed on-the-fly
- Easily applicable to list-mode rigid motion correction
- Shows improvement in off-centre resolution
- Noise propagation needs to be suppressed

No motion

When the rat moves, assume microPET moves rather than rat

Change of LOR orientation due to motion estimated by MicronTracker

Motion scan: 15 minutes 60 min post injection

Static scan: 20 minutes 85 min post injection