2D fan-beam CT with independent source and detector rotation

Simon Rit¹, Rolf Clackdoyle²

¹CREATIS / CLB / ESRF, University of Lyon, France

²LHC, Université Jean Monnet Saint Etienne, France

Image Guided Radiotherapy (IGRT)

Imaging in the radiotherapy room

- Fluoroscopy
- Portal imaging
- CT on rail
- Ultrasound probe
- ...
- Cone-beam CT since 10 years
 - Treatment guidance
 - Retrospective studies
 - Adaptive Radiotherapy

[Jaffray et al., IJROBP, 2002]

New PAIR device (Salzburg)

Patient Alignment system with an integrated x-ray Imaging Ring

- Ceiling mounted robotic arm
- Independent rotation of the source and the flat panel
- Couch translation
- Source collimation with 4 motorized jaws
- Fast switching between energies
- $41 \times 41 \text{ cm}^2$ flat panel

medPhoton G.m.b.H (courtesy of P. Steininger)

Installation: 1 prototype in Salzburg, 4 planned at MedAustron

Geometry in this presentation

D D MIDLINE θ) a r(a,s) CENTER OF ROTATION s = 0

Fig. 2. Fan beam geometry with a displaced center-of-rotation for a flat detector.

[Gullberg et al., IEEE TMI, 1986]

Geometry in this presentation

D D MIDLINE r(a,s) CENTER OF ROTATION = 0 tilted Fig. 2. Fan beam geometry with a displaced center of rotation for a flat detector.

[Gullberg et al., IEEE TMI, 1986]

Effect of tilt on sampling

Effect of tilt on sampling

Relationship

$$D = 100, \beta = 30$$

Effect of tilt on sampling

Derivative

$$\frac{\mathrm{d}s}{\mathrm{d}u} = \frac{D^2 \cos\beta}{(D\cos\beta + u\sin\beta)^2} \quad (3)$$

At origin,

d

d

$$\frac{s}{u}(0) = \frac{1}{\cos\beta} \qquad (4)$$

which would also be the constant sampling ratio in the parallel situation.

$$D = 100, \beta = 30$$

Potential use to increase spatial resolution

From parallel projections $p_{\rho}(\theta, t)$, the Fourier slice theorem leads to the inversion formula

$$f(r,\phi) = \int_0^{2\pi} \int_{-R}^R p_p(\theta,t) h[r\cos(\theta-\phi)-t] \,\mathrm{d}t \,\mathrm{d}\theta \qquad (5)$$

with

$$h(t) = \int_{\mathbb{R}} \frac{|\mu|}{2} \exp^{2i\pi\mu t} d\mu.$$
 (6)

Implementation: filtered backprojection algorithm.

Change of variable [Gullberg et al., TMI, 1986]

Assuming a flat detector at the origin (D=D'), we have

$$p_p(\theta, t) = p_f(\alpha, s)$$
 (7)

for

$$\begin{cases} t = (s + \tau)Z\\ \theta = \alpha + \tan^{-1}\left(\frac{s}{D}\right) \end{cases}$$
(8)

with

$$Z = \frac{D}{\sqrt{s^2 + D^2}} \qquad (9)$$

Change of variable [Gullberg et al., TMI, 1986]

Assuming that D and τ are constant, the Jacobian matrix is

$$\frac{dt}{ds} = (D^2 - \tau s) \frac{Z^3}{D^2}$$
(10)
$$\frac{d\theta}{ds} = \frac{Z^2}{D}$$
(11)
$$\frac{dt}{d\alpha} = 0$$
(12)
$$\frac{d\theta}{d\alpha} = 1$$
(13)

so its determinant is

$$J = \left| \left(D^2 - \tau s \right) \frac{Z^3}{D^2} \right| \tag{14}$$

Change of variable [Gullberg et al., TMI, 1986]

$$f(r,\phi) = \int_{0}^{2\pi} \int_{-W}^{W} p_{f}(\alpha,s)h\left[r\cos(\alpha+\tan^{-1}(\frac{s}{D})-\phi)-(s+\tau)Z\right](D^{2}-\tau s)\frac{Z^{3}}{D^{2}}dsd\alpha$$
$$= \int_{0}^{2\pi} \int_{-W}^{W} p_{f}(\alpha,s)h\left[UZ(s'-s)\right](D^{2}-\tau s)\frac{Z^{3}}{D^{2}}dsd\alpha$$
(15)

with

$$U = \frac{r \sin(\alpha - \phi) + D}{D}$$
(16)
$$s' = \frac{r D \cos(\alpha - \phi) - \tau D}{r \sin(\alpha - \phi) + \tau D}$$
(17)

$$-\frac{1}{r\sin(\alpha-\phi)+D}$$

We can then use an essential property of the filter:

$$h(at) = \frac{1}{a^2}h(t) \tag{18}$$

to obtain

$$f(r,\phi) = \int_0^{2\pi} \frac{1}{U^2} \int_{-W}^W p_f(\alpha,s) \frac{D - \frac{\tau s}{D}}{\sqrt{s^2 + D^2}} h(s'-s) \,\mathrm{d}s \,\mathrm{d}\alpha \quad (19)$$

- $D = 630 \text{ mm}, D' = 1100 \text{ mm}, \tau = 1 \text{ mm}$
- Projections
 - 1000
 - 768 samples
 - 0.2 mm spacing
- Reconstruction
 - 512×512 pixels
 - $0.125 \times 0.125 \,\mathrm{mm^2}$ spacing

Gray level window: [-582, -482] HU.

 $\tau = 0 \, \mathrm{mm}$

 $\tau = 1 \text{ mm}$, no correction

Gray level window: [-582, -482] HU.

 $\tau = 1 \text{ mm}$, new algorithm

Gray level window: [-582, -482] HU.

 $\tau = 1 \text{ mm}$, uncorrected weights

Experiments

Experiments

Gray level window: [-582, -482] HU.

 $\beta = 30^{\circ}$, uncorrected weights

Point Spread Function

- $D = \tau = 1000 \text{ mm}, \ \beta = 45^{\circ}$
- Ball at (0, 0), radius
 0.01 mm, density 1000 HU
- Projections
 - 1000 projections
 - 10 mm spacing
 - 1000 rays per pixel
- Reconstruction
 - Centered on (0, 0)
 - 64 × 64 pixels
 - $1 \times 1 \,\mu m^2$ spacing

Point Spread Function

- $D = \tau = 1000 \text{ mm}, \ \beta = 45^{\circ}$
- Ball at (800, 0), radius
 0.01 mm, density 1000 HU
- Projections
 - 1000 projections
 - 10 mm spacing
 - 1000 rays per pixel
- Reconstruction
 - Centered on (800, 0)
 - 64 × 64 pixels
 - $1 \times 1 \,\mu m^2$ spacing

 τ depends on the gantry angle

 $\Rightarrow \tau : \alpha \to \tau(\alpha)$ (20)

Note that the exact same derivation has been performed by [Concepcion *et al.*, IEEE TMI, 1992]

Change of variable [Crawford et al., Med Phys, 1988]

Assuming D constant and τ constant, the Jacobian matrix is

$$\frac{dt}{ds} = (D^2 - \tau s) \frac{Z^3}{D^2}$$
(21)
$$\frac{d\theta}{ds} = \frac{Z^2}{D}$$
(22)
$$\frac{dt}{d\alpha} = Z \frac{d\tau}{d\alpha}$$
(23)
$$\frac{d\theta}{d\alpha} = 1$$
(24)

so its determinant is

$$J = \left| \left(D^2 - \tau s - D \frac{\mathrm{d}\tau}{\mathrm{d}\alpha} \right) \frac{Z^3}{D^2} \right|$$
(25)

Inversion formula

$$f(r,\phi) = \int_0^{2\pi} \frac{1}{U^2} \int_{-W}^{W} p_f(\alpha,s) \frac{D - \frac{\tau s}{D} - \frac{d\tau}{d\alpha}}{\sqrt{s^2 + D^2}} h(s'-s) \, \mathrm{d}s \, \mathrm{d}\alpha$$
(26)

In [Concepcion *et al.*, IEEE TMI, 1992], opposite sign for the new term. Mathematically wrong but experimentally correct (work in progress)...

Experiments [Crawford et al., Med Phys, 1988]

Gray level window: [-582, -482] HU.

Assuming $\tau = 0 \text{ mm}$

Actual $\tau(\alpha) = 3\sin(2\alpha) \text{ mm}$

Experiments [Crawford et al., Med Phys, 1988]

Gray level window: [-582, -482] HU.

Assuming $\tau = 0 \text{ mm}$

Assuming
$$\frac{d\tau}{d\alpha} = 0 \text{ mm}$$

Experiments

Gray level window: [-582, -482] HU.

Actual $\tau(\alpha) =$ 630 × *tan*(30°) sin(2 α) mm

Assuming
$$\frac{d\tau}{d\alpha} = 0 \text{ mm}$$

D also depends on the gantry angle

 $\Rightarrow D: \alpha \to D(\alpha)$ (27)

Assuming D constant and τ constant, the Jacobian matrix is

$$\frac{\mathrm{d}t}{\mathrm{d}s} = (D^2 - \tau s) \frac{Z^3}{D^2}$$
(28)
$$\frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{Z^2}{D}$$
(29)

$$\frac{\mathrm{d}t}{\mathrm{d}\alpha} = Z \frac{\mathrm{d}\tau}{\mathrm{d}\alpha} + (s+\tau) \frac{Z^3 s^2}{D^3} \frac{\mathrm{d}D}{\mathrm{d}\alpha}$$
(30)
$$\frac{\mathrm{d}\theta}{\mathrm{d}\alpha} = 1 - \frac{Z^2 s}{D^3} \frac{\mathrm{d}D}{\mathrm{d}\alpha}$$
(31)

so its determinant is

$$J = \left| \left(D^2 - \tau s - D \frac{\mathrm{d}\tau}{\mathrm{d}\alpha} - s \frac{\mathrm{d}D}{\mathrm{d}\alpha} \right) \frac{Z^3}{D^2} \right|$$
(32)

Inversion formula

$$f(r,\phi) = \int_0^{2\pi} \frac{1}{U^2} \int_{-W}^{W} p_f(\alpha,s) \frac{D - \frac{\tau s}{D} - \frac{d\tau}{d\alpha} - \frac{s}{D} \frac{dD}{d\alpha}}{\sqrt{s^2 + D^2}} h(s'-s) \, \mathrm{d}s \, \mathrm{d}\alpha$$
(33)

Experiments

- R = 200 mm, F = 100 mm
- Projections
 - 2000
 - 1000 samples
 - 0.25 mm spacing
- Reconstruction
 - 512×512 pixels
 - 0.125 mm² spacing
 - Centered around (F,0)

Experiments

Gray level window: [-582, -482] HU.

New formula

Assuming
$$\frac{dD}{d\alpha} = 0 \text{ mm}$$

• Tilting an ideal detector improves CT resolution

Inversion formula for any 2D derivable trajectory

• Requires the derivative of the parameters with respect to the gantry angle

• What is the sensitivity to noise in geometric parameters?

• What is the optimal angular sampling?

• Will it really improve resolution when hardware considerations come into the picture?