2D fan-beam CT with independent source and detector rotation

Simon Rit ${ }^{1}$, Rolf Clackdoyle ${ }^{2}$

${ }^{1}$ CREATIS / CLB / ESRF, University of Lyon, France
${ }^{2}$ LHC, Université Jean Monnet Saint Etienne, France

Image Guided Radiotherapy (IGRT)

- Imaging in the radiotherapy room
- Fluoroscopy
- Portal imaging
- CT on rail
- Ultrasound probe
- ...
- Cone-beam CT since 10 years
- Treatment guidance
- Retrospective studies
- Adaptive Radiotherapy

[Jaffray et al., IJROBP, 2002]

New PAIR device (Salzburg)

Patient Alignment system with an integrated x-ray Imaging Ring

- Ceiling mounted robotic arm
- Independent rotation of the source and the flat panel
- Couch translation
- Source collimation with 4 motorized jaws
- Fast switching between energies
- $41 \times 41 \mathrm{~cm}^{2}$ flat panel

medPhoton G.m.b.H (courtesy of P. Steininger)

Installation: 1 prototype in Salzburg, 4 planned at MedAustron

Geometry in this presentation

[Gullberg et al., IEEE TMI, 1986]

Fig. 2. Fan beam geometry with a displaced center-of-rotation for a flat detector.

Geometry in this presentation

[Gullberg et al., IEEE TMI, 1986]

Fig. 2. Fan beam geometry with a displaced center of rotation for a flat detector.

Effect of tilt on sampling

Effect of tilt on sampling

Relationship

$$
\boldsymbol{s}=\frac{u D}{D \cos \beta+u \sin \beta}
$$

Limits

$$
\left\{\begin{array}{l}
u^{*}=\frac{-D}{\tan \beta} \\
s^{*}=\frac{D}{\sin \beta}
\end{array}\right.
$$

(1)

$D=100, \beta=30$

Effect of tilt on sampling

Derivative

$$
\begin{equation*}
\frac{\mathrm{d} s}{\mathrm{~d} u}=\frac{D^{2} \cos \beta}{(D \cos \beta+u \sin \beta)^{2}} \tag{3}
\end{equation*}
$$

At origin,

$$
\frac{\mathrm{d} s}{\mathrm{~d} u}(0)=\frac{1}{\cos \beta}
$$

$D=100, \beta=30$

Potential use to increase spatial resolution

[Müller and Arce, J Opt Soc Am A, 1994]

Inversion of the Radon transform

From parallel projections $p_{p}(\theta, t)$, the Fourier slice theorem leads to the inversion formula

$$
\begin{equation*}
f(r, \phi)=\int_{0}^{2 \pi} \int_{-R}^{R} p_{p}(\theta, t) h[r \cos (\theta-\phi)-t] \mathrm{d} t \mathrm{~d} \theta \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
h(t)=\int_{\mathbb{R}} \frac{|\mu|}{2} \exp ^{2 i \pi \mu t} \mathrm{~d} \mu \tag{6}
\end{equation*}
$$

Implementation: filtered backprojection algorithm.

Change of variable [Gullberg et al., TMI, 1986]

Assuming a flat detector at the origin ($D=D^{\prime}$), we have

$$
\begin{equation*}
p_{p}(\theta, t)=p_{f}(\alpha, s) \tag{7}
\end{equation*}
$$

for

$$
\left\{\begin{array}{l}
t=(s+\tau) Z \tag{8}\\
\theta=\alpha+\tan ^{-1}\left(\frac{s}{D}\right)
\end{array}\right.
$$

Change of variable [Gullberg et al., TMI, 1986]

Assuming that D and τ are constant, the Jacobian matrix is

$$
\begin{align*}
& \frac{\mathrm{d} t}{\mathrm{~d} s}=\left(D^{2}-\tau s\right) \frac{Z^{3}}{D^{2}} \tag{10}\\
& \frac{\mathrm{~d} \theta}{\mathrm{~d} s}=\frac{Z^{2}}{D} \tag{11}\\
& \frac{\mathrm{~d} t}{\mathrm{~d} \alpha}=0 \tag{12}\\
& \frac{\mathrm{~d} \theta}{\mathrm{~d} \alpha}=1 \tag{13}
\end{align*}
$$

so its determinant is

$$
\begin{equation*}
J=\left|\left(D^{2}-\tau s\right) \frac{Z^{3}}{D^{2}}\right| \tag{14}
\end{equation*}
$$

Change of variable [Gullberg et al., TMI, 1986]

$$
\begin{align*}
f(r, \phi) & =\int_{0}^{2 \pi} \int_{-W}^{W} p_{f}(\alpha, s) h\left[r \cos \left(\alpha+\tan ^{-1}\left(\frac{s}{D}\right)-\phi\right)-(s+\tau) Z\right]\left(D^{2}-\tau s\right) \frac{Z^{3}}{D^{2}} \mathrm{~d} s \mathrm{~d} \alpha \\
& =\int_{0}^{2 \pi} \int_{-W}^{W} p_{f}(\alpha, s) h\left[U Z\left(s^{\prime}-s\right)\right]\left(D^{2}-\tau s\right) \frac{Z^{3}}{D^{2}} \mathrm{~d} s \mathrm{~d} \alpha \tag{15}
\end{align*}
$$

with

$$
\begin{align*}
U & =\frac{r \sin (\alpha-\phi)+D}{D} \tag{16}\\
s^{\prime} & =\frac{r D \cos (\alpha-\phi)-\tau D}{r \sin (\alpha-\phi)+D} \tag{17}
\end{align*}
$$

Change of variable [Gullberg et al., TMI, 1986]

We can then use an essential property of the filter:

$$
\begin{equation*}
h(a t)=\frac{1}{a^{2}} h(t) \tag{18}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-W}^{W} p_{f}(\alpha, s) \frac{D-\frac{\tau s}{D}}{\sqrt{s^{2}+D^{2}}} h\left(s^{\prime}-s\right) \mathrm{d} s \mathrm{~d} \alpha \tag{19}
\end{equation*}
$$

Experiments [Gullberg et al., TMI, 1986]

- $D=630 \mathrm{~mm}, D^{\prime}=1100 \mathrm{~mm}, \tau=1 \mathrm{~mm}$
- Projections
- 1000
- 768 samples
- 0.2 mm spacing
- Reconstruction
- 512×512 pixels
- $0.125 \times 0.125 \mathrm{~mm}^{2}$ spacing

Experiments [Gullberg et al., TMI, 1986]

Gray level window: [-582, -482] HU.

$\tau=0 \mathrm{~mm}$

$\tau=1 \mathrm{~mm}$, no correction

Experiments [Gullberg et al., TMI, 1986]

Gray level window: [-582, -482] HU.

$\tau=0 \mathrm{~mm}$

$\tau=1 \mathrm{~mm}$, new algorithm

Experiments [Gullberg et al., TMI, 1986]

Gray level window: [-582, -482] HU.

$\tau=0 \mathrm{~mm}$

$\tau=1 \mathrm{~mm}$, uncorrected weights

Experiments

Experiments

Gray level window: [-582, -482] HU.

$\beta=30^{\circ}$, new algorithm

$\beta=30^{\circ}$, uncorrected weights

Experiments

Point Spread Function

- $D=\tau=1000 \mathrm{~mm}, \beta=45^{\circ}$
- Ball at $(0,0)$, radius 0.01 mm , density 1000 HU
- Projections
- 1000 projections
- 10 mm spacing
- 1000 rays per pixel
- Reconstruction
- Centered on (0, 0)
- 64×64 pixels
- $1 \times 1 \mu \mathrm{~m}^{2}$ spacing

Point Spread Function

- $D=\tau=1000 \mathrm{~mm}, \beta=45^{\circ}$
- Ball at $(800,0)$, radius 0.01 mm , density 1000 HU
- Projections
- 1000 projections
- 10 mm spacing
- 1000 rays per pixel
- Reconstruction
- Centered on $(800,0)$
- 64×64 pixels
- $1 \times 1 \mu \mathrm{~m}^{2}$ spacing

Point Spread Function

Short scan [Parker, Med Phys, 1982]
$\operatorname{Arc}[50,310]^{\circ}$
$\operatorname{Arc}[-130,130]^{\circ}$

Independent source and detector rotation

[Crawford et al., Med Phys, 1988]

τ depends on the gantry angle

$$
\begin{equation*}
\Rightarrow \tau: \alpha \rightarrow \tau(\alpha) \tag{20}
\end{equation*}
$$

Note that the exact same derivation has been performed by [Concepcion et al., IEEE TMI, 1992]

Change of variable [Crawford et al., Med Phys, 1988]

Assuming D constant and τ constant, the Jacobian matrix is

$$
\begin{align*}
& \frac{\mathrm{d} t}{\mathrm{~d} s}=\left(D^{2}-\tau s\right) \frac{Z^{3}}{D^{2}} \tag{21}\\
& \frac{\mathrm{~d} \theta}{\mathrm{~d} s}=\frac{Z^{2}}{D} \tag{22}\\
& \frac{\mathrm{~d} t}{\mathrm{~d} \alpha}=Z \frac{\mathrm{~d} \tau}{\mathrm{~d} \alpha} \tag{23}\\
& \frac{\mathrm{~d} \theta}{\mathrm{~d} \alpha}=1 \tag{24}
\end{align*}
$$

so its determinant is

$$
\begin{equation*}
J=\left|\left(D^{2}-\tau s-D \frac{\mathrm{~d} \tau}{\mathrm{~d} \alpha}\right) \frac{Z^{3}}{D^{2}}\right| \tag{25}
\end{equation*}
$$

Change of variable [Crawford et al., Med Phys, 1988]

Inversion formula

$$
\begin{equation*}
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-W}^{W} p_{f}(\alpha, s) \frac{D-\frac{\tau s}{D}-\frac{\mathrm{d} \tau}{\mathrm{~d} \alpha}}{\sqrt{s^{2}+D^{2}}} h\left(s^{\prime}-s\right) \mathrm{d} s \mathrm{~d} \alpha \tag{26}
\end{equation*}
$$

In [Concepcion et al., IEEE TMI, 1992], opposite sign for the new term. Mathematically wrong but experimentally correct (work in progress)...

Experiments [Crawford et al., Med Phys, 1988]

Gray level window: [-582, -482] HU.

Assuming $\tau=0 \mathrm{~mm}$

Actual $\tau(\alpha)=3 \sin (2 \alpha) \mathrm{mm}$

Experiments [Crawford et al., Med Phys, 1988]

Gray level window: [-582, -482] HU.

Assuming $\tau=0 \mathrm{~mm}$

Assuming $\frac{\mathrm{d} \tau}{\mathrm{d} \alpha}=0 \mathrm{~mm}$

Experiments

Gray level window: [-582, -482] HU.

Actual $\tau(\alpha)=$ $630 \times \tan \left(30^{\circ}\right) \sin (2 \alpha) \mathrm{mm}$

Assuming $\frac{\mathrm{d} \tau}{\mathrm{d} \alpha}=0 \mathrm{~mm}$

Going further

D also depends on the gantry angle

$$
\begin{equation*}
\Rightarrow D: \alpha \rightarrow D(\alpha) \tag{27}
\end{equation*}
$$

Change of variable

Assuming Dconstant and τ constant, the Jacobian matrix is

$$
\begin{align*}
\frac{\mathrm{d} t}{\mathrm{~d} s} & =\left(D^{2}-\tau s\right) \frac{Z^{3}}{D^{2}} \tag{28}\\
\frac{\mathrm{~d} \theta}{\mathrm{~d} s} & =\frac{Z^{2}}{D} \tag{29}\\
\frac{\mathrm{~d} t}{\mathrm{~d} \alpha} & =Z \frac{\mathrm{~d} \tau}{\mathrm{~d} \alpha}+(s+\tau) \frac{Z^{3} s^{2}}{D^{3}} \frac{\mathrm{~d} D}{\mathrm{~d} \alpha} \tag{30}\\
\frac{\mathrm{~d} \theta}{\mathrm{~d} \alpha} & =1-\frac{Z^{2} s}{D^{3}} \frac{\mathrm{~d} D}{\mathrm{~d} \alpha} \tag{31}
\end{align*}
$$

so its determinant is

$$
\begin{equation*}
J=\left|\left(D^{2}-\tau s-D \frac{\mathrm{~d} \tau}{\mathrm{~d} \alpha}-s \frac{\mathrm{~d} D}{\mathrm{~d} \alpha}\right) \frac{Z^{3}}{D^{2}}\right| \tag{32}
\end{equation*}
$$

Change of variable

Inversion formula

$$
\begin{equation*}
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-W}^{W} p_{f}(\alpha, s) \frac{D-\frac{\tau s}{D}-\frac{\mathrm{d} \tau}{\mathrm{~d} \alpha}-\frac{s}{D} \frac{\mathrm{~d} D}{\mathrm{~d} \alpha}}{\sqrt{s^{2}+D^{2}}} h\left(s^{\prime}-s\right) \mathrm{d} s \mathrm{~d} \alpha \tag{33}
\end{equation*}
$$

Experiments

- $R=200 \mathrm{~mm}, F=100 \mathrm{~mm}$
- Projections
- 2000
- 1000 samples
- 0.25 mm spacing
- Reconstruction
- 512×512 pixels
- $0.125 \mathrm{~mm}^{2}$ spacing
- Centered around (F,0)

Experiments

Gray level window: [-582, -482] HU.

New formula

Assuming $\frac{\mathrm{d} D}{\mathrm{~d} \alpha}=0 \mathrm{~mm}$

Conclusions

- Tilting an ideal detector improves CT resolution
- Inversion formula for any 2D derivable trajectory
- Requires the derivative of the parameters with respect to the gantry angle

Open questions

- What is the sensitivity to noise in geometric parameters?
- What is the optimal angular sampling?
- Will it really improve resolution when hardware considerations come into the picture?

