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Motivation and Introduction

Motivation

The recent introduction of organ specific SPECT imaging systems has
focused attention on using arrays of small cameras in combination with
pinhole collimators rather than conventional parallel hole collimators.
While offering advantages in terms of imaging speed and detection
sensitivity, cost issues inevitably arise with increased numbers of detector
arrays and compromises must be made between image quality (i.e. counts)
and the number of detectors (i.e. cost).

A. Ihsani, T. Farncombe Asymptotic Analysis of the Single-Pinhole Transform McMaster University 2



Motivation and Introduction

Project Goal

Objective

Construct a single-pinhole SPECT imaging device that utilizes the smallest
number of detector heads while retaining the desired spatial resolution.

One approach to achieve this goal is to mathematically formulate a
single-pinhole transform (SPT) and analyze its properties in Fourier
space so as to obtain a domain of frequencies which allow for the
reconstruction of a function without introducing artifacts. To
accomplish this two aspects will be treated:

sampling lattices which will enable the exact reconstruction of a
function;
asymptotic properties of the function/transform to determine the
optimal sampling lattice.
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Sampling Lattices and Reconstruction

Sampling

Under what conditions can a function be recovered from its values on a
discrete lattice?

Let a lattice in Rn be described by a nonsingular matrix
W = (w1, . . . ,wn) ∈ Rn×n as

LW =

{
x ∈ Rn

∣∣∣∣∣x =
n∑

i=1

kiwi , ki ∈ Z

}
= WZn

with a reciprocal lattice L⊥W = L2πW−> .
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Sampling Lattices and Reconstruction

Sampling of Bandlimited Functions

Theorem

Let f ∈ L2(Rn), and let f̂ = 0 outside some compact set K ⊆ Rn. Assume

that the translates
◦
K + ξ ∩

◦
K + ξ′ = ∅ for ξ, ξ′ ∈ L⊥W and ξ 6= ξ′, then f is

uniquely determined by its values on LW and∫
Rn

f (x)dx = | det(W )|
∑
x∈LW

f (x)

and
||f ||2L2(Rn) = | det(W )|

∑
x∈LW

|f |2(x).

The trapezoidal rule for integration is exact.

The reconstruction from the samples is stable in an L2 sense.
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Sampling Lattices and Reconstruction

Sampling Periodic Functions

Let f be in Rn with n linear independent periods p1, . . . , pn ∈ Rn and let
P = (p1, . . . , pn) with lattices LP and L⊥P , then f can be viewed as a
function in a quotient group Rn/LP described by

P[0, 1)n =

{
x ∈ Rn

∣∣∣∣∣x =
n∑

i=1

λipi , λi ∈ [0, 1)

}
.

The Fourier transform is computed as

f̂ (ξ) =
1

| det(P)|

∫
Rn/LP

e−i〈x ,ξ〉f (x)dx , ξ ∈ L⊥P .

Since the Fourier transform is defined on a discrete set of points then the
inverse Fourier transform is

f̃ (x) =
∑
ξ∈L⊥P

e i〈x ,ξ〉f̂ (ξ).
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Sampling Lattices and Reconstruction

Sampling Periodic Functions

Provided that the function f is periodic we need a sampling lattice LW

such that LP ⊆ LW (equivalently L⊥W ⊆ L⊥P ) that has the same periods.

⇒ The function f must be sampled at a rate that its periods dictate.

Theorem

Let f ∈ L2(Rn/LP) with f̂ = 0 outside a finite set K ⊆ L⊥P . Assuming
K + ξ ∩ K + ξ′ = ∅, ξ, ξ′ ∈ L⊥W and ξ 6= ξ′ then f is uniquely determined
by its values on LW /LP and∫

Rn/LP

f (x)dx = | det(W )|
∑

x∈LW /LP

f (x).
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Sampling Lattices and Reconstruction

Sampling in Tomography

In tomography a function may have several variables and may be periodic
in only some of them.

Let f (x , y), x ∈ Rm, y ∈ Rn−m, be a function in Rn with periods
p1, . . . , pm ∈ Rm in x , then the function f can be viewed as a function on
Rm/LP × Rn−m with Fourier transform

f̂ (k, ξ) =
(2π)−

(n−m)
2

| det(P)|

∫
Rm/LP

∫
Rn−m

f (x , y)e−i(〈x ,k〉+〈y ,ξ〉)dydx

where k ∈ L⊥P and ξ ∈ Rn−m.

The function f must be sampled on a lattice LW ⊆ Rn that has

periods pi , ie. p̄i =

(
pi

0

)
∈ LW .
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Sampling Lattices and Reconstruction

Sampling in Tomography

Theorem

Let f ∈ L2(Rm/LP × Rn−m) and let f̂ = 0 outside a set K ⊂ L⊥P × Rn−m.
Assuming that the translates of K are mutually disjoint with respect to
L⊥W , then f is uniquely determined by its values on LW /LP̄ and∫

Rm/LP

∫
Rn−m

f (x , y)dxdy = | det(W )|
∑

LW /LP̄

f (x).
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Sampling Lattices and Reconstruction

Sampling in Tomography: Example

Let f (x , y) be periodic in x and bandlimited in y with a circular profile in
Fourier space, then this function can be sampled using the following
schemes.

k

ξ

k

ξ
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Sampling Lattices and Reconstruction

Sampling in Tomography: Example

If we were to drop the bandlimit assumption on y then aliasing would
occur as the shifted copies of the frequency profile would overlap.

k

ξ

k

ξ
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Sampling Lattices and Reconstruction

Summary

The theory presented so far is used in determining the efficient
sampling schemes for integral transforms based on their asymptotic
properties.
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Asymptotic Properties of Transforms in Fourier Space

Asymptotic Analysis of Integral Transforms

One approach to analyzing integral transforms (i.e. Radon, Fan-beam)
involves finding an optimal sampling lattice which is determined by the
asymptotic properties of the integral transform in Fourier space.
Assumptions:

The object (function) f being imaged is assumed to be supported in a
ball of radius ρ in R2 with essential bandwidth Ω.

There is no truncation in the projections.

Essential Bandwidth

Let Ω be a cut-off frequency such that |f̂ (ξ)| is sufficiently small for
|ξ| > Ω, then Ω may be viewed as an essential bandwidth of f (f is
Ω-bandlimited).
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Asymptotic Properties of Transforms in Fourier Space

The Radon Transform

ρ

Ω

Rf (φ, s) =

∫
〈x ,θ〉=s

f (x)dx =

∫
ϑ⊥

f (sθ + y)dy

where ϑ⊥ = {x ∈ R2| 〈x , θ〉 = s} and θ = (cosφ, sinφ)>.
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Asymptotic Properties of Transforms in Fourier Space

The Radon Transform

Ω φ
θ

s

Rf (φ, s) =

∫
〈x ,θ〉=s

f (x)dx =

∫
ϑ⊥

f (sθ + y)dy

where ϑ⊥ = {x ∈ R2| 〈x , θ〉 = s} and θ = (cosφ, sinφ)>.
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Asymptotic Properties of Transforms in Fourier Space

Fourier Transform of Radon Transform

(R̂f )(k , σ) = (2π)−3/2

∫ 2π

0

∫ ρ

−ρ
e−i(kφ+σs)(Rf )(φ, s)dsdφ

= (2π)3/2ik
∫
|x |<ρ

e−ikψf (x)Jk(−σ|x |)dx .

where

Jk(−σ|x |) = (2πik)−1

∫ 2π

0
e−ikφ−iσ|x | cosφdφ

is a Bessel function of the first kind of order k .
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Asymptotic Properties of Transforms in Fourier Space

Asymptotic Properties of the Radon Transform

Debye’s asymptotic relation states that |Jk(t)| decays exponentially as

|k |, |t| → ∞ provided that |t| < |k |. So |(R̂f )(k , σ)| is small for |σρ| < |k|
(since |x | < ρ) which is the area outside of the set

K = {(k, σ)| |σ| < Ω, |σρ| < |k|}.

k

σ

Ω

ρΩ
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Asymptotic Properties of Transforms in Fourier Space

Asymptotic Properties of the Radon Transform

k

σ

Ω

ρΩ

The “essential set” K depicted above helps to determine

the minimum angular distance between detector heads placed on a
great circle by displacing the set along the k axis, and

the resolution of the detector by finding the minimum displacement
along the σ axis.
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Asymptotic Properties of Transforms in Fourier Space

Radon Transform: Optimal Sampling Lattice

An Ω-bandlimited function f ∈ L2(R2) can be recovered exactly from its
samples as long as the displacements of the set K in the lattice do not
overlap (see Natterer [1986]).

k

σ

Standard Lattice

k

σ

Interlaced Lattice
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Asymptotic Properties of Transforms in Fourier Space

The Fanbeam Transform

r

a

β

θ

φ

α

Df (β, α) =

∫
ϑ⊥

f (r sinαθ + y)dt

where ϑ⊥ = {x ∈ R2 |〈x , θ〉 = r sin θ}, θ = (cosφ, sinφ)> and
φ = β + α− π/2.
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Asymptotic Properties of Transforms in Fourier Space

Fourier Transform of Fanbeam Transform

Taking the Fourier transform of the Fanbeam transform and performing
some mathematical manipulation it becomes apparent that the asymptotic
properties of this transform depend of two Bessel functions of the first
kind.

ĝ(k ,m) = (2π)−2

∫
R2

f (x)e−ikψ
∫
R

Jk(−σ|x |)
∫ π

−π
e iσr sinα+ikαdαdσdx

= (2π)−1

∫
R2

f (x)e−ikψ
∫
R

Jk(−σ|x |)Jm−k(σr)dσdx .
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Asymptotic Properties of Transforms in Fourier Space

Asymptotic Properties of the Fanbeam Transform

A lengthy analysis (see Palamodov [1995]; Natterer [1993]) and using
Debye’s asymptotic relation for both Bessel functions shows that ĝ is small
outside the set

K = {(k,m) ∈ Z2| |k −m| < Ωr , |k |r < |k −m|ρ}.

k

m

Ω

rΩ

ρΩ
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Asymptotic Properties of Transforms in Fourier Space

Fanbeam Transform: Optimal Sampling Lattice

As in the case of the Radon transform, an optimal sampling lattice can be
constructed dependent on the essential bandwidth Ω and the finite support
of the object ρ, however, in this case the fan-beam radius r also plays a
role.

k

m

k

m
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Asymptotic Properties of the SPT in Fourier Space

The Single-Pinhole Transform (Flat Detector)

x1

x2

ρ

Ω

detector

r 1
r 2
−

r 1
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Asymptotic Properties of the SPT in Fourier Space

The Single-Pinhole Transform (Flat Detector)

x1

x2

θ

θ⊥

φ

ψ

β

ψ ⊥
a

s

s ′′

q

α
r 2
−

r 1

r 1
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Asymptotic Properties of the SPT in Fourier Space

The Single-Pinhole Transform (Flat Detector)

g(β, s) =

∫
ϑ⊥

f

(
r1 sin

(
arctan

(
s

r2 − r1

))
θ + `

)
d`

where

ϑ⊥ =

{
x ∈ R2| 〈x , θ〉 = r1 sin

(
arctan

(
s

r2 − r1

))}
,

θ = (cosφ, sinφ)>

and

φ = β + arctan

(
s

r2 − r1

)
− π

2
.
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Asymptotic Properties of the SPT in Fourier Space

The Single-Pinhole Transform (Flat Detector)

The “flat-detector” SPT proved to be difficult to analyze.

A “curved-detector” SPT is simpler to analyze and might bring some
insight into the “flat-detector” SPT.
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Asymptotic Properties of the SPT in Fourier Space

Curved-Detector Single Pinhole Transform

x1

x2

θ

θ⊥

φ
β

a

α

s

s ′′

q

r 2
−

r 1

r 1
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Asymptotic Properties of the SPT in Fourier Space

Curved-Detector Single Pinhole Transform

g(β, s) =

∫
ϑ⊥

f

(
r1 sin

(
s

r2 − r1

)
θ + `

)
d`

where

ϑ⊥ =

{
x ∈ R2| 〈x , θ〉 = r1 sin

(
s

r2 − r1

)}
,

θ = (cosφ, sinφ)>

and
φ = β +

s

r2 − r1
− π

2
.
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Asymptotic Properties of the SPT in Fourier Space

Fourier Transform of the Curved Detector SPT

ĝ(k , σ) =
1

2π2

∫ π

−π

∫ π
2

(r2−r1)

−π
2

(r2−r1)
g(β, s)e−ikβ−iσsdsdβ

=
1

π

∫
R2

f (x)e−ikγ
∫
R

Jk(−ς|x |)Ik−(r2−r1)σ(ςr1)dςdx

where

I`(ςr1) =

∫ π
2

(r2−r1)

−π
2

(r2−r1)
e
iςr1 sin( s

r2−r1
)+i` s

r2−r1 ds.

and Jk(−ς|x |) is a Bessel function of the first kind of order k.
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Asymptotic Properties of the SPT in Fourier Space

Asymptotic Properties of the Curved-Detector SPT

The asymptotic properties of Jk(−ς|x |) are known due to Debye’s
asymptotic relation.

The asymptotic properties of I`(ςr1) were found using stationary
phase approximation employing the techniques in (Bleistein and
Handelsman [1975]).

The resulting “essential set” is

K = {(k , σ)| |k − σ(r2 − r1)| < Ωr1, |k |r1 < |k − σ(r2 − r1)|ρ}.
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Asymptotic Properties of the SPT in Fourier Space

Asymptotic Properties of the Curved-Detector SPT

K = {(k , σ)| |k − σ(r2 − r1)| < Ωr1, |k |r1 < |k − σ(r2 − r1)|ρ}.

k

σ

slope =
1

r2−r1

slope =
1

r2−r1

Ωr1
r2−r1

− Ωr1
r2−r1

slo
pe

=
r 1

+
ρ

(r 2
−r

1
)ρ

slope
=

ρ−
r1

(r2−
r1 )ρ

Ωρ−Ωρ
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Asymptotic Properties of the SPT in Fourier Space

Summary

Using stationary phase approximation the asymptotic properties of the
curved-detector SPT were found.

The essential set K of the curved-detector SPT is a
re-parameterization of the fan-beam transform.

⇒ The intent was to find a theoretical optimum for the design of a
SPECT device which can be used as a starting point in numerical
methods that account for additional factors.
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Thank you
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