A compressed sensing method for cardiac C-arm computed tomography

What is a C-arm ?

- C-shaped gantry mounted on a robotic arm
- Used for real-time 2D imaging during
 - Diagnostic angiography
 - Stenting
 - Vascular surgery
 - Aortic valve implantation
 - ...
- Can mimic a CT scanner acquisition

Clinical and technical constraints

- Single breath hold
- Patients with cardiac / vascular diseases
- Short acquisition (10 to 15 seconds)
- Single sweep acquisition
- Simultaneous acquisition of electrocardiogram

September 10th 2013

ECG gating and angular sampling

- 308 projections
- 20% gating

60 projections for each ECGgated reconstruction

- More than enough <u>if they are evenly distributed</u>
- Unfortunately, they are not

ECG-gated reconstruction: angular sampling

10 beats 20 beats 30 beats 60 beats

ECG-gated SART reconstructions of a Shepp & Logan phantom with several heart rates (initialized from zero)

Goals of cardiac C-arm CT

- Reconstruct a single volume, usually the heart in diastole
 - Locate and measure infarcted regions
 - Diagnose coronary artery diseases
- Reconstruct the whole cardiac cycle
 - Diagnose kinetic defects
 - Measure functional parameters (e.g. ejection fraction)

A compressed sensing method for 3D + time reconstruction

- 4D RecOnstruction using Spatial and TEmporal Regularization
 - Reconstruction of the whole cardiac cycle at once
 - Heart segmentation: movement allowed only inside
 - Spatial regularization: 3D total variation
 - Temporal regularization: 1D total variation
- Alternating algorithm:
 - Unregularized conjugate gradient (minimizing data attachment)
 - Regularization steps

4D RecOnstructiOn using Spatial and TEmporal Regularization

For k from 0 to N-1 :

$$\hat{f} = \arg\min_{f} \sum_{\theta} \left\| R_{\theta} S_{\theta} f - p_{\theta} \right\|_{2}^{2} \text{ initialized with } f^{(k)}$$

$$\forall i, H\hat{f}_{i} = \frac{1}{m} \sum_{j} H\hat{f}_{j}$$

$$\hat{f} = \max(\hat{f}, 0)$$

$$\hat{f} = \arg\min_{f} \lambda_{space} \left\| f - \hat{f} \right\|_{2}^{2} + TV_{space}(f)$$

$$f^{(k+1)} = \arg\min_{f} \lambda_{time} \left\| f - \hat{f} \right\|_{2}^{2} + TV_{time}(f)$$

f = current volume

- **R** = Radon transform or X-ray transform
- *p* = measured projections
- **S** = interpolation operator
- *H* = ROI selection

September 10th 2013

4D RecOnstructiOn using Spatial and TEmporal Regularization

Results

September 10th 2013

Thank you for your attention

September 10th 2013