

Local model reconstruction for metal artifact reduction

<u>Katrien Van Slambrouck</u> Johan Nuyts KU Leuven, Belgium

October 2012, Lyon

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
- Simulation: hip phantom with bone
- Acceleration effect
- Conclusion and future work

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
 - Simulation: hip phantom with bone
 - Acceleration effect
- Conclusion and future work

Artifacts in computed tomography (CT)

- Important facility for non-destructive imaging
- Metals in the scanned object \rightarrow severe artifacts
- Artifacts are often due to an incorrect or incomplete modeling of the acquisition
- Most important causes of (metal) artifacts:
 - Beam hardening
 - (Non)-linear partial volume effects
 - Scatter
 - Noise
 - (Motion)

Double knee prosthesis

Hip prostheses

Dental fillings

I. Beam hardening

Polychromatic spectrum, beam hardens when going through the object Low energy photons are more likely absorbed

Typical artifact appearance: dark streaks in between metals, dark shades around metals (and cupping)

Iron in water

Amalgam in PMMA

II. (Non)-linear partial volume effects

- Linear: voxels only partly filled with particular substance
- Non-linear: averaging over beam width, focal spot, ...

Typical artifact appearance: dark and white streaks connecting edges

Iron in water

Amalgam in PMMA

III. Scatter

- Compton scatter: deviation form original trajectory
- Scatter grids?

Typical artifact appearance: dark streaks in between metals, dark shades around metals (and cupping)

Iron in water

Amalgam in PMMA

IV. Noise

Quantum nature: Poisson distribution

Typical artifact appearance: streaks around and in between metals

Iron in water

Amalgam in PMMA

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
 - Simulation: hip phantom with bone
 - Acceleration effect
- Conclusion and future work

Two important groups of MAR-methods:

Projection completion

Iterative reconstruction

Two important groups of MAR-methods:

interpolation removal Projection completion \rightarrow Metal projections are corrupt Metal projection are selected, removed and replaced by interpolated projections measurement **Final reconstruction** reconstruction segmentation + metals

Projection completion

- Standard $PC \rightarrow$ linear interpolation
- PC-NMAR* → linear interpolation with normalisation for intersection lengths of differents tissues
- $FSMAR^* = NMAR^{low} + w_j FBP^{high} + (1 w_j) NMAR^{high}$

*Meyer et al, Med. Phys., (2010 & 2011)

Two important groups of MAR-methods:

Projection completion

Iterative reconstruction

Two important groups of MAR-methods:

Update

Initial estimate

Iterative reconstruction

 \rightarrow Artifacts are caused by the use of an incorrect/inaccurate acquisition model

Accurate modeling (e.g. polychromatic)

Next estimate

Two important groups of MAR-methods:

Update

NEW estimate

Iterative reconstruction

 \rightarrow Artifacts are caused by the use of an incorrect/inaccurate acquisition model

Accurate modeling (e.g. polychromatic)

Next estimate

Energy model: MLTR + MLTR-C

• Poisson Likelihood:

- Update:
- Projection estimate
 - Monochromatic model MLTR*

$$\hat{y}_i = b_i \exp\left(-\sum_j^J l_{ij}\mu_j\right)$$

 $L = \sum_{i}^{I} \oint_{i} \ln \hat{y}_{i} - \hat{y}_{i}^{T}$ $\mu_{j}^{new} = \mu_{j}^{old} - \frac{\frac{\partial L}{\partial \mu_{j}}\Big|_{\vec{\mu}^{old}}}{\sum_{h}^{J} \frac{\partial^{2} L}{\partial \mu_{j} \partial \mu_{h}}\Big|_{\vec{\mu}^{old}}}$

- Simple polychromatic correction factor - MLTRC

$$\hat{y}_i = \sum_k b_{ik} \exp\left(-P_k \sum_j^J l_{ij} \mu_j\right) \qquad P_k$$

source

$$=\frac{\mu_k^{\text{water}}}{\mu_k^{\text{water}}}$$

Energy model: MLTRC

Energy model: IMPACT

 Iterative Maximum Likelihood Polychromatic Algorithm for CT – IMPACT*

Projection estimate takes (full) polychromaticity into account:

*De Man et al, Trans. Med. Im., 2001; 20 (10): 999-1008

Resolution model

Resolution model:

- Pixel size
- Sampling detector elements

Two important groups of MAR-methods:

Projection completion

→ Metal projections are corrupt

Metal projection are selected, removed and replaced by interpolated projections

Iterative reconstruction

 \rightarrow Artifacts are caused by the use of an incorrect/inaccurate acquisition model

Accurate modeling (e.g. polychromatic)

+ Fast (FBP-based)

+ Often artifact free (small and few metals)

- Loss of information (metals and edges)

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
 - Simulation: hip phantom with bone
 - Acceleration effect
- Conclusion and future work

<u>Hypothesis</u>: sophisticated models only needed in the vicinity of metals

<u>Hypothesis</u>: sophisticated models only needed in the vicinity of metals

Maximum likelihood iterative reconstruction Select metal areas = patches: thresholding

<u>Hypothesis</u>: sophisticated models only needed in the vicinity of metals

Maximum likelihood iterative reconstruction Select metal areas = patches: thresholding

Define model for each patch: energy and resolution

Local models iterative reconstruction

³Fessler J.A. et al, Trans. Med. Im., 1997; 16(2): 166-175

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
 - Simulation: hip phantom with bone
 - Acceleration effect
 - Conclusion and future work

Acquisition

Siemens Sensation 16 (part of Biograph 16 PET/CT)

- 120 kV, 300 mA
- 2 x 1.00 mm
- Circular scan, 0.5 s per rotation (no flying focal spot)
- 2D reconstruction of 1 slice

Body phantom with two femoral implants

FBP

IMPACT

FBP

IMPACT

Patched IMPACT

Improved convergence?

FBP

IMPACT

Patched IMPACT

MLTRC + IMPACT

Results: Resolution

Patched IMPACT

Patched IMPACT Increased res. for implantpatches

MLTRC + IMPACT

MLTRC + IMPACT Increased res. for implantpatches

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
- Simulation: hip phantom with bone
 - Acceleration effect
- Conclusion and future work

Simulation of Siemens Sensation 16

- Polychromatic spectrum 120 kV
- 2D circular scan (no flying focal spot)

Simulation of Siemens Sensation 16

- Polychromatic spectrum 120 kV
- 2D circular scan (no flying focal spot)
- Subsampled pixels, views, source and detector elements

Simulation of Siemens Sensation 16

- Polychromatic spectrum 120 kV
- 2D circular scan (no flying focal spot)
- Subsampled pixels, views, source and detector elements
- Cross talk + afterglow

Body phantom with two femoral implants & realistic bone structure

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
 - Simulation: hip phantom with bone
- Acceleration effect
 - Conclusion and future work

Acceleration

Patient CT data – low dose whole body: (3 it., 40 sub.)

16 patches

Acceleration

Improved convergence?

Accerated by $\sqrt{nrpatch}$

Acceleration

Patient FDG PET data - (3 it., 10 sub.)

12

NEGML*

*Nuyts et al., J Nucl Med, 2002; 43: 1054-1062

Content

- Artifacts in computed tomography
- Metal artifact reduction
 - Projection completion
 - Iterative reconstruction
- Local models
 - Patchwork structure
 - Patchwork reconstruction
- Measurement: hip phantom
 - Acquisition
 - Phantom
 - Results
 - Simulation: hip phantom with bone Acceleration effect
- Conclusion and future work

Conclusion

- Local model reconstruction without losing image quality
- Improved convergence due to sequential update
- Less deformations ↔ projection completion
- Acceleration effect (efficient memory usage)
- Applicable to other modalities and other methods
- Introduction of priors: can also be patched

Future work

- Spiral CT: patient data
 - (Axial) partial volume effect
 - Scatter
 - Motion

Thank you! Questions?