Design of a spatially-variable-focusing collimator and impact of the forward projection model in reconstruction for small-animal SPECT

Didier Benoit, Julien Bonte, Irène Buvat

QIM IMNC-IN2P3/CNRS, UMR 8165, Orsay

DROITE Seminar, October 25, 2012
1. **Project overview**
 - Introduction
 - Detector
 - Collimators

2. **Simulation in GATE**
 - GPU/CPU Implementations
 - Results

3. **Reconstruction**
 - OS-EM-ML
 - Projectors
 - Normalization
 - PSF Model

4. **Results**
 - Sensitivity
 - Results
 - Spatial Resolution

5. **Conclusion/Perspectives**
Introduction

- SIGAHR5 project (Système multi-modulaire préclinique d’Imagerie GAmmma Haute Résolution et Sensibilité).
- Aim : Design a multi-fonctionnal preclinic scintigraphic imaging system, appropriate for 3 types of applications:
 - Oncology.
 - Neurology.
 - Cardiology.

- Small-animal SPECT imaging.
- High performance system with semi-conductor detectors (CZT).
- Original collimation system : Spatially-Variable-Focusing Cone-Beam collimator (SVF-CB).
- First SVF-CB collimator in small-animal SPECT.
- French TecSan ANR started in 2009, coordinated by Biospace Lab.
Project Partners

- **Biospace Lab**, Paris, marketing, automatism, systemic, software.
- **CEA-LETI**, Grenoble, gamma detection technology, electronic.
- **IMNC**, Orsay, simulations, reconstruction.
- **INSERM U877 unit** (Daniel Fagret), Grenoble: radiotracer, cardiology applications.
- **TIRO CEA-University** (Philippe Franken), Nice: radiotracer, oncology applications.
- **INSERM U930 unit** (Denis Guilloteau), Tours: radiotracer, neurology.
IMNC Aims

- Modeling the collimator and detector with GATE [1-2].
- Implementation of an appropriate iterative reconstruction:
 - Study the feasibility to reconstruct with focal lengths inside the field-of-view (FOV).
 - Develop a PSF model for this collimator.
 - Show the impact of different forward and back projector models.
- Characterize the SVF-CB collimator (sensitivity, spatial resolution) and compare to a parallel collimator.

Detector simulated in GATE:

- CZT pixels.
- Pixels: 0.75x0.75x5.0 mm³.
- 131x131 pixels.
Parallel Collimator

Parallel collimator simulated in GATE:
- **Septa** in *tungsten*.
- 0.3x0.3 mm square holes.
- 0.15 mm septa width.
SVF-CB In Collimator

SVF-CB In collimator simulated in GATE:

- **Focals in field of view** (FOV).
- Septa in tungsten.
- 0.3x0.3 mm square holes at the surface of detector.
- 0.15 mm septa width.
SVF-CB Out Collimator simulated in GATE:

- **Focals out field of view** (FOV).
- 0.3x0.3 mm square holes at the surface of detector.
- Septa in tungsten.
- 0.15 mm septa width.
Focal Distributions

Hyperbolic focal length distributions, in the transaxial plane, proposed by CEA-LETI:

\[f(x) = f_{\text{min}} \sqrt{\left(\frac{x}{x_{\text{max}}}\right)^2 \left[\left(\frac{f_{\text{max}}}{f_{\text{min}}}\right)^2 - 1\right] + 1} \]
SPECT simulation in GATE: Aims

Work in collaboration with Julien Bert (LaTIM) in Brest during the first two weeks of July 2012.

- GATE/GPU and GATE/Multi-core CPUs interface for SPECT imaging.
- Ray-tracing technique in the collimator.
- No interaction modeled in the collimator (work in progress in Brest).
- Parallel and convergent square-hole collimator only.
- Application: small-animal SPECT 99mTc (140.5 keV).
Method

1. **Particles emission** (\(^{99m}\)Tc source).
2. **Storing the particle features** at the collimator entrance (until a buffer is full).
3. When the buffer is full, we **project the particles** onto the collimator exit with the ray-tracing technique on GPU or on multi-core CPUs.
4. When the buffer content is processed, we **complete** the simulation as usual in GATE creating new tracks corresponding to the exiting particles.
Results

- Factor 10 between GPU (580 GTX) and 1 CPU (Intel XEON) in collimator only (for a point source simulation, 1 GBq, 0.1 sec. acquisition duration, size of buffer 20000000 particles). 40 min simulation duration.
- GATE/GPU and GATE/Multi-core CPUs interface available.
- Ray-tracing limitation: no particle interaction within the collimator is modeled, so only appropriate for 99mTc.
- Future work:
 - Modeling the particle interactions within the collimator (work in progress in Brest): scatter and septal penetration will be simulated.
 - Extending to other collimator geometry (only square-hole collimators are supported at the moment).
Using the OS-EM-ML[3] iterative algorithm:

- Neither scatter nor attenuation correction.

\[\lambda_j^{(k+1)} = \frac{\lambda_j^{(k)}}{\sum_{t \in S_i} \frac{\alpha_{t,j}}{N_t}} \sum_{t \in S_i} \frac{\alpha_{t,j} p_t}{\sum_{b=0}^M \alpha_{t,b} \lambda_b^{(k)}} \]

- \(k \): iteration
- \(S_i \): subset i
- \(\lambda_j \): estimate voxel j
- \(t \): element in subset
- \(\alpha_{t,j} \): system matrix entry
- \(N_t \): normalized element t
- \(p_t \): data pixel element t
- \(M \): voxel elements

Siddon[4] Ray-Tracer (S-RT)

A projection line links the center of a detector pixel to the corresponding focal line.
Voxel: $37 \times 750 \times 37 \, \mu m^3$

A projection line links a point randomly selected at the detector pixel surface to the corresponding focal line.
Voxel: 37x750x37 μm^3, 1024 rays

Parallel collimator

SVF-CB In collimator
Siddon Ray-Tracer with Solid Angle (S-RT-SA)

A projection line links a point randomly selected at the detector pixel surface and a point randomly selected at the entrance of the collimator hole.
Voxel : 37x750x37 μm^3, 1024 rays

Parallel collimator

SVF-CB In collimator
Normalization (1)

Data are normalized in order to get the same efficiency for each pixel detector elements. The normalization map was obtained by:

- Simulating a planar 99mTc source in GATE (10 mm width) close to the collimator (15 MBq, 5120 seconds acquisition duration).

GATE SVF-CB In simulation

GATE SVF-CB Out simulation
Normalization (2)

- Projecting an analytic planar source (as in GATE) with the different projectors. Storing in an array the ratio between our model (A) and the Monte Carlo (MC) model.

\[EFF_t = \frac{MC_t}{A_t} \]

- Computing the mean value of these ratios.

\[\overline{EFF} = \frac{\sum_{t=0}^{N-1} EFF_t}{N} \]

- Normalization:

\[Norm_t = \frac{EFF}{EFF_t} \]
Examples of normalization maps:

SVF-CB In normalization
To improve the spatial resolution in the reconstructed images, we developed a PSF model for the SVF-CB collimator (non-stationary and anisotropic). For the parallel hole collimator we used an empiric stationary and isotropic PSF.

Example of few simulated points (0 mm in axial plane) reconstructed with S-RT-SA projector and SVF-CB In collimator:

0 mm radial
8 mm
24 mm
30 mm
As in [5], we defined a kernel PSF for each voxel in the image space, and we expressed the PSF as a 1D axial function and 2D transaxial functions. The reconstructed point sources were fitted with a skew distribution:

$$G(x) = Ae^{-\frac{(x-\xi)^2}{2\sigma^2}} \left[1 + \text{erf}\left(\frac{x-\xi}{\sigma\sqrt{2}}\right)\right]$$

- ξ: location
- σ: scale
- α: shape

PSF Plotting example (1)

Point source: 0.0 mm in axial position and 0.0 mm in radial position
PSF Plotting example (2)

Point source: 0.0 mm in axial position and 28.0 mm in radial position
PSF evolution: S-RT-SA (voxel 500 µm, 4096 rays)
PSF evolution: S-RT-IV (voxel 500 μm, 4096 rays)
We simulated a 99mTc cylindrical source (12.5 mm radius, 90 mm height), at the center of the FOV. 60 projections (over 360°), 117 MBq and 48 seconds per projection.
Results: Parallel-hole collimator

- Mean
 - S-RT
 - S-RT + PSF 1.17 mm
 - S-RT-IV
 - S-RT-IV + PSF 1.17 mm
 - S-RT-SA
 - S-RT-SA + PSF 0.8 mm

- Noise [%]
 - S-RT
 - S-RT + PSF 1.17 mm
 - S-RT-IV
 - S-RT-IV + PSF 1.17 mm
 - S-RT-SA
 - S-RT-SA + PSF 0.8 mm
Results: SVF-CB In collimator

![Graph 1: Mean vs Iteration]

![Graph 2: Noise vs Iteration]

![Graph 3: Mean vs Noise]
Spatial Resolution (1)

Simulations of line sources filled with 99mTc and 47,36 MBq (diameter 0.28 mm, length 90 mm) in air at 2.25 mm from the FOV center. We simulated three different ROR: 25, 30 and 35 mm, with 60 projections, 32 sec per projection.
Spatial Resolution (2)

FWHM variation as a function of the number of rays for the line source with 35 mm ROR and the S-RT-SA projector.
Derenzo simulations with hot inserts (2.4 mm, 2.0, 1.7, 1.35, 1.0 and 0.75). Each insert is filled with 15.9 MBq/mL 99mTc. No background activity. Derenzo at the center of the FOV, 120 projections, and 30 seconds per projection.
Spatial Resolution (4)

S-RT, parallel + PSF

S-RT-IV

S-RT-SA

0 10 20 30 40 50 60 70
Distance [mm]
0
2
4
6
8
10
12
14
S-RT
S-RT-IV
S-RT-SA
S-RT + 1.17 mm PSF
S-RT-IV + 1.17 mm PSF
S-RT-SA + 0.8 mm PSF
Spatial Resolution (5)

- S-RT, SVF-CB In no PSF
- S-RT-IV
- S-RT-SA
- S-RT, SVF-CB In + PSF
- S-RT-IV
- S-RT-SA
Spatial Resolution (6)
Reconstruction for an SVF-CB collimator with focal lengths within the FOV is feasible.

First SVF-CB collimator design for small-animal SPECT.

Higher sensitivity of the SVF-CB collimator compared to the parallel collimator.

S-RT-SA more accurate than S-RT because all geometric effects are included.

The PSF model improves the spatial resolution.

An original PSF model for an SVF-CB collimator has been developed.

Future work:
- Adapt the PSF model to the whole image space and improve it.
- Compute the system matrix by Monte-Carlo simulation and compare to our PSF model for SVF-CB collimator.