Outline	Project overview	Simulation in GATE	Reconstruction	Results	Conclusion/Perspectives

Design of a spatially-variable-focusing collimator and impact of the forward projection model in reconstruction for small-animal SPECT

Didier Benoit, Julien Bonte, Irène Buvat

QIM IMNC-IN2P3/CNRS, UMR 8165, Orsay

DROITE Seminar, October 25, 2012

1 F	^P roject overv	iew		
•	Introductio	n		
•	Detector			
G	Collimators	i		
(2) S	GPU/CPU Results	GATE Implementation	S	
3 F 4	Reconstructio OS-EM-ML Projectors	n -		

Reconstruction

Results

イロト イポト イヨト イヨト

Conclusion/Perspectives

Simulation in GATE

- Normalization
- PSF Model

Project overview

4 Results

Outline

- Sensitivity
- Results
- Spatial Resolution
- 6 Conclusion/Perspectives

3

Outline	Project overview ●0000000	Simulation in GATE	Reconstruction	Results 000000000	Conclusion/Perspectives
Intro	duction				

- SIGAHRS project (Système multi-modulaire préclinique d'Imagerie GAmma Haute Résolution et Sensibilité).
- Aim : Design a multi-fonctionnal preclinic scintigraphic imaging system, appropriate for 3 types of applications :
 - Oncology.
 - Neurology.
 - Cardiology.
- Small-animal SPECT imaging.
- High performance system with **semi-conductor** detectors (CZT).
- Original collimation system : Spatially-Variable-Focusing Cone-Beam collimator (SVF-CB).
- First SVF-CB collimator in small-animal SPECT.
- French TecSan ANR started in 2009, coordinated by Biospace Lab.

Outline	Project overview 0●000000	Simulation in GATE	Reconstruction	Results 000000000	Conclusion/Perspectives
Proje	ect Partners	5			

- **Biospace Lab**, Paris, marketing, automatism, systemic, software.
- **CEA-LETI**, Grenoble, gamma detection technology, electronic.
- IMNC, Orsay, simulations, reconstruction.
- **INSERM U877 unit** (Daniel Fagret), Grenoble : radiotracer, cardiology applications.
- **TIRO CEA-University** (Philippe Franken), Nice : radiotracer, oncology applications.
- INSERM U930 unit (Denis Guilloteau), Tours : radiotracer, neurology.

Outline	Project overview	Simulation in GATE	Reconstruction	Results 000000000	Conclusion/Perspectives
IMNO	C Aims				

- Modeling the collimator and detector with GATE [1-2].
- Implementation of an appropriate iterative reconstruction :
 - Study the feasibility to reconstruct with focal lengths inside the field-of-view (FOV).
 - Develop a PSF model for this collimator.
 - Show the impact of different forward and back projector models.
- Characterize the SVF-CB collimator (sensitivity, spatial resolution) and compare to a parallel collimator.

[1] Jan et al. "GATE : a simulation toolkit for PET and SPECT", Phys. Med. Biol., vol. 49, no. 19, p. 4543, 2004.

[2] Jan et al. "GATE V6 : a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy", Phys. Med. Biol., vol. 56, pp. 881-901, 2011. $\Box \mapsto \langle \overline{\Box} \rangle \land \langle \overline{\Xi} \rangle \land \langle \overline{\Xi} \rangle \Rightarrow \langle \overline{\Xi} \rangle$

Outline

Project overview Simi

Simulation in GATE

Reconstruction

Results 000000000 Conclusion/Perspectives

Detector

Detector simulated in GATE :

- CZT pixels.
- Pixels : 0.75x0.75x5.0 mm³.
- 131x131 pixels.

Parallel collimator simulated in GATE :

- Septa in tungsten.
- 0.3x0.3 mm square holes.
- 0.15 mm septa width.

 Outline
 Project overview
 Simulation in GATE
 Reconstruction
 Results
 Conclusion/Perspectives

 SVF-CB In Collimator
 SVF-CB In Collimator

SVF-CB In collimator simulated in GATE :

- Focals in field of view (FOV).
- Septa in tungsten.
- 0.3x0.3 mm square holes at the surface of detector.
- 0.15 mm septa width.

 Outline
 Project overview
 Simulation in GATE
 Reconstruction
 Results
 Conclusion/Perspectives

 SVF-CB
 Out
 Collimator
 Co

SVF-CB Out collimator simulated in GATE :

- Focals out field of view (FOV).
- 0.3x0.3 mm square holes at the surface of detector.
- Septa in tungsten.
- 0.15 mm septa width.

Hyperbolic focal length distributions, in the transaxial plane, proposed by CEA-LETI :

$$f(x) = f_{min} \sqrt{\left(\frac{x}{x_{max}}\right)^2 \left[\left(\frac{f_{max}}{f_{min}}\right)^2 - 1\right] + 1}$$

Work in collaboration with Julien Bert (LaTIM) in Brest during the first two weeks of July 2012.

- GATE/GPU and GATE/Multi-core CPUs interface for SPECT imaging.
- Ray-tracing technique in the collimator.
- No interaction modeled in the collimator (work in progress in Brest).
- Parallel and convergent square-hole collimator only.
- Application : small-animal SPECT ^{99m}Tc (140.5 keV).

Outline	Project overview	Simulation in GATE ○●○	Reconstruction	Results 000000000	Conclusion/Perspectives
Meth	od				

- Particles emission (99m Tc source).
- Storing the particle features at the collimator entrance (until a buffer is full).
- When the buffer is full, we project the particles onto the collimator exit with the ray-tracing technique on GPU or on multi-core CPUs.
- When the buffer content is processed, we complete the simulation as usual in GATE creating new tracks corresponding to the exiting particles.

(日)(4月)(4日)(4日)(日)

Outline	Project overview	Simulation in GATE ○○●	Reconstruction	Results 000000000	Conclusion/Perspectives
Resu	lts				

- Factor 10 between GPU (580 GTX) and 1 CPU (Intel XEON) in collimator only (for a point source simulation, 1 GBq, 0.1 sec. acquisition duration, size of buffer 20000000 particles). 40 min simulation duration.
- GATE/GPU and GATE/Multi-core CPUs interface available.
- Ray-tracing limitation : no particle interaction within the collimator is modeled, so only appropriate for ^{99m}Tc.
- Future work :
 - Modeling the particle interactions within the collimator (work in progress in Brest) : scatter and septal penetration will be simulated.
 - Extending to other collimator geometry (only square-hole collimators are supported at the moment).

Using the OS-EM-ML[3] iterative algorithm :

• Neither scatter nor attenuation correction.

[3] H. M. Hudson et al., "Accelerated image reconstruction using ordered subsets of projection data", IEEE Trans. Med. Imaging, vol. 13, no. 4, pp. 601-609, 1994.

A projection line links the center of a detector pixel to the corresponding focal line. Voxel : $37x750x37 \ \mu m^3$

Parallel collimator

SVF-CB In collimator

[4] R. L. Siddon, "Fast calculation of the exact radiological path for a three dimensional CT array", Med. Phys., vol. 12, no. 2, pp. 252-255, 1985. < □ > < ○ > < ○ > < ≥ > < ≥ > ≥ ≥

A projection line links a point randomly selected at the detector pixel surface to the corresponding focal line. Voxel : $37x750x37 \ \mu m^3$, 1024 rays

Parallel collimator

SVF-CB In collimator

 Outline
 Project overview
 Simulation in GATE
 Reconstruction
 Results
 Conclusion/Perspectives

 Siddon Ray-Tracer with Solid Angle (S-RT-SA)
 Siddon Ray-Tracer with Solid Angle (S-RT-SA)
 Siddon Ray-Tracer with Solid Angle (S-RT-SA)
 Siddon Ray-Tracer with Solid Angle (S-RT-SA)

A projection line links a point randomly selected at the detector pixel surface and a point randomly selected at the entrance of the collimator hole.

Voxel : $37 \times 750 \times 37 \ \mu m^3$, 1024 rays

Parallel collimator

SVF-CB In collimator

Normalization (1)

Data are normalized in order to get the same efficiency for each pixel detector elements. The normalization map was obtained by :

• Simulating a planar ^{99m}Tc source in GATE (10 mm width) close to the collimator (15 MBq, 5120 seconds acquisition duration).

GATE SVF-CB In simulation

GATE SVF-CB Out simulation

୬ ଏ (୦ 18/36

Outline	Project overview	Simulation in GATE	Reconstruction	Results 000000000	Conclusion/Perspectives
Norm	alization (2	2)			

• Projecting an analytic planar source (as in GATE) with the different projectors. Storing in an array the ratio between our model (A) and the Monte Carlo (MC) model.

$$EFF_t = \frac{MC_t}{A_t}$$

• Computing the mean value of these ratios.

$$\overline{EFF} = \frac{\sum_{t=0}^{N-1} EFF_t}{N}$$

• Normalization :

$$Norm_t = rac{EFF}{EFF_t}$$

イロト イポト イヨト イヨト 三日

 Outline
 Project overview
 Simulation in GATE
 Reconstruction
 Results
 Conclusion/Perspectives

 Normalization (3)

Examples of normalization maps :

SVF-CB In normalization

Outline	Project overview	Simulation in GATE	Reconstruction ○○○○○○●○○○○○	Results 000000000	Conclusion/Perspectives
PSF	Model (1)				

To improve the spatial resolution in the reconstructed images, we developed a PSF model for the SVF-CB collimator (non-stationary and anisotropic). For the parallel hole collimator we used an empiric stationary and isotropic PSF.

Example of few simulated points (0 mm in axial plane) reconstructed with S-RT-SA projector and SVF-CB In collimator :

PSF Model (2)

As in [5], we defined a kernel PSF for each voxel in the image space, and we expressed the PSF as a 1D axial function and 2D transaxial functions. The reconstructed point sources were fitted with a skew distribution :

$$G(x) = Ae^{-rac{(x-\xi_x)^2}{2\sigma_x^2}} \left[1 + erf(lpha rac{(x-\xi_x)}{\sigma_x \sqrt{2}})
ight]$$

[5] C. Cloquet et al., "Non-Gaussian space-variant resolution modelling for list-mode reconstruction", Phys. Med. Biol., vol. 55 5045, 2010.

✓) Q (№)
22/36

Point source : 0.0 mm in axial position and 0.0 mm in radial position and 0.0 mm in radial position

23/36

Simulation in GATE

Reconstruction

Results 000000000 Conclusion/Perspectives

PSF Plotting example (2)

Point source : 0.0 mm in axial position and 28.0 mm in radial position

24/36

Outline Project overview

Simulation in GATE

Reconstruction

Results 000000000 Conclusion/Perspectives

PSF evolution : S-RT-SA (voxel 500 μ m, 4096 rays)

✓) Q (№ 25/36 Outline Project overview Sim

Simulation in GATE

0.40

Reconstruction

Results 000000000

(日) (四) (三) (三) (三)

Conclusion/Perspectives

PSF evolution : S-RT-IV (voxel 500 μ m, 4096 rays)

Distance [mm]

26/36

æ

Outline	Project overview	Simulation in GATE	Reconstruction	Results ●○○○○○○○○	Conclusion/Perspectives
Sensi	tivitv				

We simulated a 99m Tc cylindrical source (12.5 mm radius, 90 mm height), at the center of the FOV. 60 projections (over 360°), 117 MBq and 48 seconds per projection.

27/36

Results : Parallel-hole collimator

Results : SVF-CB In collimator

Simulations of line sources filled with 99m Tc and 47,36 MBq (diameter 0.28 mm, length 90 mm) in air at 2.25 mm from the FOV center. We simulated three different ROR : 25, 30 and 35 mm, with 60 projections, 32 sec per projection.

^{30/36}

FWHM variation as a function of the number of rays for the line source with 35 mm ROR and the S-RT-SA projector.

31/36

Derenzo simulations with hot inserts (2.4 mm, 2.0, 1.7, 1.35, 1.0 and 0.75). Each insert is filled with 15.9 MBq/mL 99m Tc. No background activity. Derenzo at the center of the FOV, 120 projections, and 30 seconds per projection.

S-RT, parallel no PSF

S-RT-IV

S-RT-SA

Outline

Project overview

Simulation in GATE

Reconstruction

Results ○○○○○●○○ Conclusion/Perspectives

Spatial Resolution (4)

S-RT, parallel + PSF

S-RT-IV

S-RT-SA

Outline

Project overview

Simulation in GATE

Reconstruction

Results ○○○○○○○●○ Conclusion/Perspectives

Spatial Resolution (5)

S-RT, SVF-CB In no PSF

S-RT-IV

S-RT-SA

S-RT, SVF-CB In + PSF

S-RT-IV

S-RT-SA

Project overview

Outline

Simulation in GATE

Reconstruction

Results ○○○○○○○○● Conclusion/Perspectives

Spatial Resolution (6)

Outline	Project overview	Simulation in GATE	Reconstruction	Results 000000000	Conclusion/Perspectives
Conc	lusion/Pers	spectives			

- Reconstruction for an SVF-CB collimator with focal lengths within the FOV is feasible.
- First SVF-CB collimator design for small-animal SPECT.
- Higher sensitivity of the SVF-CB collimator compared to the parallel collimator.
- S-RT-SA more accurate than S-RT because all geometric effets are included.
- The PSF model improves the spatial resolution.
- An original PSF model for an SVF-CB collimator has been developed.
- Future work :
 - Adapt the PSF model to te whole image space and improve it.
 - Compute the system matrix by Monte-Carlo simulation and compare to our PSF model for SVF-CB collimator.

(ロ) (部) (E) (E) (E)