Proximal tools for image reconstruction in dynamic Positron Emission Tomography

Nelly Pustelnik¹

joint work with Caroline Chaux², Jean-Christophe Pesquet³, and Claude Comtat⁴

¹ Laboratoire de Physique, ENS Lyon – CNRS UMR 5672
 ² LATP, Université d'Aix-Marseille 1 –CNRS UMR 7353
 ³ LIGM, Université Paris-Est – CNRS UMR 8049
 ⁴ SHFJ, CEA

Séminaire DROITE

September, 17th 2012

Proximal algorithms 00000 PET reconstruction

2/32

POSITRON EMISSION TOMOGRAPHY (PET)

Image reconstruction for dynamic PET

Difficulties:

- ✗ Degradation: projection operator and noise. ✗
- ✗ Large data size.

State-of-the-art 000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			3/32
OUTLINE			

- 1. Degradation model and state-of-the-art
 - \rightarrow Variational approach, sparsity, frames
- 2. Proximal algorithms
 - \rightarrow Proximity operators, properties, DR, PPXA, ...
- 3. Space+time PET reconstruction
 - \rightarrow PPXA, hybrid regularization, simulated and preclinical data
- 4. Conclusion and future works

State-of-the-art ●000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			4/32

DEGRADATION MODEL

- ▶ $A \in \mathbb{R}^{M \times N}$: matrix associated with the projection operator.
- $\triangleright \mathcal{P}_{\alpha}$: Poisson noise with scaling parameter $\alpha > 0$.

GOAL: Find a vector \hat{y} the closest to \overline{y} from the observations z

State-of-the-art 0●00000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00	
			5/32	
				i
VARIATIONAL	APPROACH:	STATE-OF-THE-ART		

▶ Quadratic regularization - Wiener filtering [Wiener,1949]:

$$\widehat{y} = \underset{y \in \mathbb{R}^{N}}{\operatorname{argmin}} \|Ay - z\|_{2}^{2} + \lambda \|y\|_{2}^{2} \quad \text{where} \quad \lambda > 0$$

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			5/32

VARIATIONAL APPROACH: STATE-OF-THE-ART

Quadratic regularization - Wiener filtering [Wiener,1949]:

$$\widehat{y} = \underset{y \in \mathbb{R}^{N}}{\operatorname{argmin}} \|Ay - z\|_{2}^{2} + \lambda \|y\|_{2}^{2} \quad \text{ where } \quad \lambda > 0$$

▶ Use of frames [Haar,1910] [Mallat,2009] - Soft-thresholding:

$$\widehat{y} = \underset{y \in \mathbb{R}^N}{\operatorname{argmin}} \|Ay - z\|_2^2 + \lambda \|Fy\|_1 \quad \text{where} \quad \lambda > 0$$

Proximal algorithms 00000 PET reconstruction

6/32

VARIATIONAL APPROACH: STATE-OF-THE-ART

 $F \in \mathbb{R}^{K \times N}$: matrix associated with the analysis frame operator. $F^* \in \mathbb{R}^{N \times K}$: matrix associated with the synthesis frame operator.

Tight frame condition: $F^*F = \mu \text{Id}$ pour $\mu > 0$.

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
			7/32

VARIATIONAL APPROACH: STATE-OF-THE-ART

Quadratic regularization - Wiener filtering [Wiener,1949]:

$$\widehat{y} = \underset{y \in \mathbb{R}^N}{\operatorname{argmin}} \|Ay - z\|_2^2 + \lambda \|y\|_2^2 \quad \text{where} \quad \lambda > 0$$

▶ Use of frames [Haar,1910] [Mallat,2009] - Soft-thresholding:

$$\widehat{y} = \underset{y \in \mathbb{R}^N}{\operatorname{argmin}} \|Ay - z\|_2^2 + \lambda \|Fy\|_1$$

 \rightarrow 2 interpretations

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			8/32

VARIATIONAL APPROACH: BAYESIAN FORMULATION

▶
$$u = Ay = (u^{(i)})_{1 \le i \le N}$$
: realization of a random vector U.

 \triangleright z: realization of a random vector Z.

▶ $x = Fy = (x^{(k)})_{1 \le k \le K}$: realization of a random vector $\overline{X} = (X^{(k)})_{1 \le k \le K}$ having independent components.

MAP estimator (Maximum A Posteriori)

$$\max_{y} P(U = Ay \mid Z = z)$$

$$\max_{x} P(Z = z \mid U = AF^{*}x) \cdot P(X = x)$$

$$\min_{x} -\underbrace{\ln P(Z = z \mid U = AF^{*}x)}_{\text{Data fidelity}} - \underbrace{\ln \prod_{k=1}^{K} p_{X^{(k)}}(x^{(k)})}_{\text{A priori}}$$

Proximal algorithms 00000 PET reconstruction

9/32

VARIATIONAL APPROACH: BAYESIAN FORMULATION

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000000000000000000000000000000000	00000	00000000000	00
			10/32

VARIATIONAL APPROACH: BAYESIAN FORMULATION

$$\min_{x} \quad -\underbrace{\ln \mathsf{P}(Z=z \mid U=AF^*x)}_{\text{Fidelity term}} - \underbrace{\ln \prod_{k=1}^{K} \mathsf{p}_{X^{(k)}}(x^{(k)})}_{\text{A priori}}$$

where

$$\mathsf{P}(Z=z \mid U=AF^*x) = \frac{1}{(2\pi\alpha)^{N/2}} \exp\left\{-\frac{\|AF^*x-z\|_2^2}{2\alpha}\right\}$$

and

$$p_{X^{(k)}}(x^{(k)}) = \frac{1}{C_k} \exp\{-\lambda_k |x^{(k)}|\}$$

Consequently

ly
$$\min_{x} \underbrace{\frac{1}{2\alpha} \|AF^*x - z\|_2^2}_{\text{Fidelity term}} + \underbrace{\sum_{k=1}^K \lambda_k |x^{(k)}|}_{\text{A priori}}$$

State-of-the-art 00000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			11/32
VARIATIONAL	APPROACH: CC	OMPRESSED SEN	SING
• Sparsity assump	by $y_0 = ar$ y where $(\forall y = (ar)$ z > 0	$ g \min_{y \in \mathbb{R}^{N}} \ Fy\ _{0} \text{ s.t. } \ Ay \ _{1 \le i \le N} \in \mathbb{R}^{N} \ y\ _{0} = $	$-z\ _2^2 \le \varepsilon$ $\equiv \#\{i: y_i \neq 0\}$
• Convex relaxati	on : $\widehat{y} = a$ where $(\forall y = ($	$\operatorname{rgmin}_{y \in \mathbb{R}^{N}} \ Fy\ _{1} \text{ s.t. } \ Ay$ $y_{i})_{1 \leq i \leq N} \in \mathbb{R}^{N}) \ y\ _{1} \equiv$	$\begin{aligned} y - z \ _2^2 &\leq \varepsilon \\ &\equiv \sum_{i=1}^N y_i \end{aligned}$
• Lagragian form	ulation : $\widehat{y} = a$ where $\lambda > 0$	$\underset{y \in \mathbb{R}^N}{\operatorname{rgmin}} \ Ay - z\ _2^2 + \lambda \ $	$Fy\ _1$

 \Rightarrow Compressed sensing [Donoho,2004][Candès,2008]

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			12/32

VARIATIONAL APPROACH: CRITERION CHOICE

Minimization problem

Find
$$\widehat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^N} \sum_{j=1}^J f_j(y)$$

where $(f_j)_{1 \le j \le J}$ belong to the class of convex functions, l.s.c., and proper from \mathbb{R}^N to $] - \infty, +\infty]$.

State-of-the-art
0000000000

Proximal algorithms 00000

PET reconstruction

VARIATIONAL APPROACH: CRITERION CHOICE

Minimization problem

Find
$$\widehat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^N} \sum_{j=1}^J f_j(y)$$

 \blacktriangleright f_i may model the data fidelity term

- ► $\forall y \in \mathbb{R}^N, f_j(y) = \frac{1}{2\alpha} ||Ay z||^2$ for a Gaussian noise ► $\forall y \in \mathbb{R}^N, f_j(y) = D_{KL}(\alpha A y, z)$ for a Poisson noise

State-of-the-art 0000000000

Proximal algorithms 00000

PET reconstruction

12/32

VARIATIONAL APPROACH: CRITERION CHOICE

Minimization problem

Find
$$\widehat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^N} \sum_{j=1}^J f_j(y)$$

 \blacktriangleright f_i may model the data fidelity term

- ∀y ∈ ℝ^N, f_j(y) = ¹/_{2α} ||Ay − z||² for a Gaussian noise
 ∀y ∈ ℝ^N, f_j(y) = D_{KL}(αAy, z) for a Poisson noise

Poisson distribution:

$$P(Z = z | U = Ay) = \prod_{i=1}^{N} \frac{\exp(-\alpha(Ay)_i)}{z_i!} (\alpha(Ty)_i)^{z_i}$$

Poisson anti-log likelihood:

$$-\log P(Z=z|U=Ay) = \sum_{i=1}^{N} -z_i \log(\alpha(Ay)_i) + \alpha(Ay)_i$$

State-of-the-art 00000000000

Proximal algorithms 00000 PET reconstruction

12/32

VARIATIONAL APPROACH: CRITERION CHOICE

Minimization problem

Find
$$\widehat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^N} \sum_{j=1}^J f_j(y)$$

- \blacktriangleright f_j may model the data fidelity term
 - ► $\forall y \in \mathbb{R}^N, f_j(y) = \frac{1}{2\alpha} ||Ay z||^2$ for a Gaussian noise
 - ► $\forall y \in \mathbb{R}^N, f_j(y) = D_{KL}(\alpha Ay, z)$ for a Poisson noise

\blacktriangleright f_j may model a prior

- ► $\forall y \in \mathbb{R}^N, f_j(y) = \lambda ||y||_2^2$: Tikhonov regularization
- ► $\forall y \in \mathbb{R}^N, f_j(y) = \lambda \operatorname{tv}(y)$: total variation
- ► $\forall y \in \mathbb{R}^N, \ f_j(y) = \lambda \|Fy\|_1$: model sparsity

State-of-the-art 00000000000

Proximal algorithms 00000 PET reconstruction

12/32

VARIATIONAL APPROACH: CRITERION CHOICE

Minimization problem

Find
$$\widehat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^N} \sum_{j=1}^J f_j(y)$$

- \blacktriangleright f_j may model the data fidelity term
 - ► $\forall y \in \mathbb{R}^N, f_j(y) = \frac{1}{2\alpha} ||Ay z||^2$ for a Gaussian noise
 - ► $\forall y \in \mathbb{R}^N, f_j(y) = D_{KL}(\alpha Ay, z)$ for a Poisson noise

\blacktriangleright f_j may model a prior

- ► $\forall y \in \mathbb{R}^N, f_j(y) = \lambda ||y||_2^2$: Tikhonov regularization
- ► $\forall y \in \mathbb{R}^N, f_j(y) = \lambda \operatorname{tv}(y)$: total variation
- ► $\forall y \in \mathbb{R}^N, f_j(y) = \lambda ||Fy||_1$: model sparsity

\blacktriangleright f_j may model constraints

► $\forall y \in \mathbb{R}^N, f_j(y) = \iota_C(y) \ (C = [0, 255]^N)$: data range constraint

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
00000000●	00000		00
			13/32

VARIATIONAL APPROACH: ALGORITHM CHOICE

Minimization problem

Find
$$\widehat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^N} \sum_{j=1}^J f_j(y)$$

Properties of the involved functions

- smooth functions
 - \rightarrow gradient-based methods (Newton, Quasi-Newton, . . .)
- constraints

 \rightarrow projection based methods (POCS, SIRT, ...)

- non-smooth functions
 - \rightarrow proximal algorithms (FB, DR, PPXA, ...)

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	●0000	0000000000	00
			14/32

Definition [Moreau (1965)]

Let $\varphi \colon \mathcal{H} \to \mathbb{R}$ be a convex, l.s.c., and proper function. The proximity operator of φ at point $u \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} u$ such that

$$\forall u \in \mathcal{H}$$
), $\operatorname{prox}_{\varphi} u = \arg\min_{v \in \mathcal{H}} \varphi(v) + \frac{1}{2} \left\| u - v \right\|^2$

Examples:

- If $\varphi = \iota_C \Rightarrow \operatorname{prox}_{\iota_C} = P_C$ where P_C denotes the projection onto the convex set C.
- If $\varphi = \chi |\cdot|$ with $\chi > 0 \Rightarrow \operatorname{prox}_{\varphi}$ is the soft-thresholding with a fixed threshold χ .

• If
$$\varphi = D_{KL}(\alpha, \zeta)$$
 with $\zeta, \alpha > 0 \Rightarrow \operatorname{prox}_{\varphi} = \frac{1}{2}(\cdot - \alpha + \sqrt{|\cdot - \alpha|^2 + 4\zeta}).$

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	0000	0000000000	00
			15/32

Proposition [Combettes, Pesquet, 2007]

- \triangleright \mathcal{H}_1 and \mathcal{H}_2 : real separable Hilbert spaces,
- $\triangleright \varphi$: convex, l.s.c., and proper function from \mathcal{H}_2 to \mathbb{R} ,
- ► $L: \mathcal{H}_1 \to \mathcal{H}_2$: bounded linear operator such that $L \circ L^* = \sigma \operatorname{Id}$ where $\sigma > 0$. Then,

$$\mathrm{prox}_{\varphi \circ L} = \mathrm{Id} + \frac{L^*}{\sigma} \circ (\mathrm{prox}_{\sigma \varphi} - \mathrm{Id}) \circ L \; .$$

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	0000	0000000000	00
			15/32

Proposition [Combettes, Pesquet, 2007]

- \triangleright \mathcal{H}_1 and \mathcal{H}_2 : real separable Hilbert spaces,
- $\triangleright \varphi$: convex, l.s.c., and proper function from \mathcal{H}_2 to \mathbb{R} ,
- ► $L: \mathcal{H}_1 \to \mathcal{H}_2$: bounded linear operator such that $L \circ L^* = \sigma \mathrm{Id}$ where $\sigma > 0$. Then,

$$\mathrm{prox}_{\varphi \circ L} = \mathrm{Id} + \frac{L^*}{\sigma} \circ (\mathrm{prox}_{\sigma \varphi} - \mathrm{Id}) \circ L \ .$$

► If L denotes a tight frame, i.e. $L = F^*$ where $F^* \circ F = \mu \text{Id}$ ⇒ Proposition can be used (example: $\text{prox}_{D \ltimes I}(F^* \cdot z)$)

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
			15/32

Proposition [Combettes, Pesquet, 2007]

- \triangleright \mathcal{H}_1 and \mathcal{H}_2 : real separable Hilbert spaces,
- $\triangleright \varphi$: convex, l.s.c., and proper function from \mathcal{H}_2 to \mathbb{R} ,
- ► $L: \mathcal{H}_1 \to \mathcal{H}_2$: bounded linear operator such that $L \circ L^* = \sigma \mathrm{Id}$ where $\sigma > 0$. Then,

$$\operatorname{prox}_{\varphi \circ L} = \operatorname{Id} + \frac{L^*}{\sigma} \circ (\operatorname{prox}_{\sigma \varphi} - \operatorname{Id}) \circ L$$

- If L denotes a tight frame, i.e. $L = F^*$ where $F^* \circ F = \mu \text{Id}$
 - \Rightarrow Proposition can be used (example: $\operatorname{prox}_{D_{KL}(F^*,z)}$)

Extension to the case of a separable φ and a linear operator such that $L \circ L^* = D$ where D denotes a diagonal matrix [Pustelnik et al, 2011].

State-of-the-art	
0000000000	

Proximal algorithms 00000

PET reconstruction

16/32

PROXIMAL ALGORITHM: FORWARD-BACKWARD

Forward-backward algorithm

Let $u_0 \in \mathcal{H}$. The algorithm constructs a sequence $(u_\ell)_{\ell>1}$ by the iterations

$$u_{\ell+1} = u_{\ell} + \lambda_{\ell} \left(\operatorname{prox}_{\gamma_{\ell} f_1}(u_{\ell} - \gamma_{\ell} \nabla f_2(u_{\ell})) - u_{\ell} \right)$$

State-of-the-art	
0000000000	

16/32

PROXIMAL ALGORITHM: FORWARD-BACKWARD

Forward-backward algorithm

Let $u_0 \in \mathcal{H}$. The algorithm constructs a sequence $(u_\ell)_{\ell>1}$ by the iterations

$$u_{\ell+1} = u_{\ell} + \lambda_{\ell} \left(\operatorname{prox}_{\gamma_{\ell} f_1}(u_{\ell} - \gamma_{\ell} \nabla f_2(u_{\ell})) - u_{\ell} \right)$$

Forward-backward convergence [Combettes and Wajs, 2005]

- f_2 is β -Lipschitz differentiable on \mathcal{H} with $\beta > 0$
- ► $\gamma_{\ell} \in]0, 2/\beta[$: algorithm step-size
- ► $\lambda_{\ell} \in]0,1]$: relaxation parameter

Under these assumptions, $(u_\ell)_{\ell \in \mathbb{N}}$ converges to a solution of min $f_1(u) + f_2(u)$.

State-of-the-art 0000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			17/32

PROXIMAL ALGORITHM: PPXA

Parallel ProXimal Algorithm [Combettes and Pesquet, 2008]

$$\gamma \in]0, +\infty[, (\omega_j)_{1 \le j \le J} \in]0, 1]^J \text{ such that } \sum_{j=1}^J \omega_j = 1,$$

•
$$(v_{j,0})_{1 \le j \le J} \in (\mathbb{R}^N)^J$$
 and $u_0 = \sum_{j=1}^J \omega_j v_{j,0}$,

The sequence $(x_{\ell})_{\ell > 1}$ is generated by the iterations:

$$\begin{cases} \text{For } j = 1, \dots, J \\ [p_{j,\ell} = \operatorname{prox}_{\gamma/\omega_j f_j} v_{j,\ell} \leftarrow \text{ compute every proximity operators} \\ p_{\ell} = \sum_{j=1}^{J} \omega_j p_{j,\ell} \\ \lambda_{\ell} \in]0, 2[\\ \text{For } j = 1, \dots, J \\ [v_{j,\ell+1} = v_{j,\ell} + \lambda_{\ell} (2 \ p_{\ell} - u_{\ell} - p_{j,\ell}) \\ u_{\ell+1} = u_{\ell} + \lambda_{\ell} (p_{\ell} - u_{\ell}) \end{cases}$$

Convergence [Combettes and Pesquet, 2008]

Under some assumptions, the sequence $(u_\ell)_{\ell\geq 1}$ converges to a solution of min $\sum_{j=1}^J f_j(u)$

▶ Forward-Backward [Combettes-Wajs, 2005]

 $\rightarrow J = 2, L_i = \text{Id}$ and a gradient Lipschitz function.

- ► Forward-Backward [Combettes-Wajs, 2005]
 - $\rightarrow J = 2, L_i = \text{Id and a gradient Lipschitz function.}$
- ▶ Douglas-Rachford [Combettes-Pesquet, 2007]

 $\rightarrow J = 2$ and $L_i = \text{Id.}$

- ▶ Forward-Backward [Combettes-Wajs, 2005]
 - $\rightarrow J = 2, L_i = \text{Id and a gradient Lipschitz function.}$
- Douglas-Rachford [Combettes-Pesquet, 2007]
 - $\rightarrow J = 2$ and $L_i = \text{Id}.$
- ▶ **PPXA** [Combettes-Pesquet, 2008] → $L_i = \text{Id}.$

 $\begin{array}{c|c} \mbox{State-of-the-art} & \mbox{Proximal algorithms} & \mbox{PET reconstruction} & \mbox{Conclusion} & \mbox{ood} & \mbox{odd} & \mbox{odd}$

- ▶ Forward-Backward [Combettes-Wajs, 2005]
 - $\rightarrow J = 2, L_i = \text{Id}$ and a gradient Lipschitz function.
- Douglas-Rachford [Combettes-Pesquet, 2007]

 $\rightarrow J = 2$ and $L_i = \text{Id}.$

▶ **PPXA** [Combettes-Pesquet, 2008]

 $\rightarrow L_i = \mathrm{Id}.$

▶ **PPXA** + [Pesquet-Pustelnik, 2012]

 $\rightarrow \sum_{i} L_{i}^{*} L_{i}$ invertible.

- ▶ Forward-Backward [Combettes-Wajs, 2005]
 - $\rightarrow J = 2, L_i = \text{Id}$ and a gradient Lipschitz function.
- Douglas-Rachford [Combettes-Pesquet, 2007]

 $\rightarrow J = 2$ and $L_i = \text{Id.}$

▶ **PPXA** [Combettes-Pesquet, 2008]

 $\rightarrow L_i = \mathrm{Id}.$

- ▶ **PPXA** + [Pesquet-Pustelnik, 2012]
 - $\rightarrow \sum_{i} L_{i}^{*} L_{i}$ invertible.
- ▶ **M+SFBF** [Combettes-Briceño, 2011]

 \rightarrow no required conditions.

- ▶ Forward-Backward [Combettes-Wajs, 2005]
 - $\rightarrow J = 2, L_i = \text{Id}$ and a gradient Lipschitz function.
- Douglas-Rachford [Combettes-Pesquet, 2007]

 $\rightarrow J = 2$ and $L_i = \text{Id.}$

▶ **PPXA** [Combettes-Pesquet, 2008]

 $\rightarrow L_i = \mathrm{Id}.$

- ▶ **PPXA** + [Pesquet-Pustelnik, 2012]
 - $\rightarrow \sum_{i} L_{i}^{*} L_{i}$ invertible.
- ▶ **M+SFBF** [Combettes-Briceño, 2011]
 - \rightarrow no required conditions.
- ▶ **M+LFBF** [Combettes-Pesquet, 2012]
 - \rightarrow one function with a Lipschitz gradient.

 $\begin{array}{c} {\rm State-of-the-art}\\ {\rm 0000000000} \end{array}$

Proximal algorithms 00000 PET reconstruction

19/32

PET RECONSTRUCTION (DYNAMIC)

State-of-the-art	
0000000000	

Proximal algorithms 00000 PET reconstruction

20/32

PET RECONSTRUCTION (DYNAMIC)

Degradation model $\forall t \in \{1, \dots, T\}, z_t = \mathcal{P}_{\alpha}(A\bar{y}_t)$

- $A \in \mathbb{R}^{M \times N}$: matrix associated with the projection operator.
- $\triangleright \mathcal{P}_{\alpha}$: Poisson noise with scaling parameter $\alpha > 0$.

PET RECONSTRUCTION: STATE-OF-THE-ART

- ▶ Filter Back Projection: FBP
- ▶ EM-ML [Shepp, Vardi, 1982][Lange, Carson, 1984]
- ▶ Ordered Subsets EM: OSEM [Hudson, Larkin, 1994]
- ▶ Space-alternating Generalized EM: SAGE [Fessler, Hero, 1994]
- ▶ RAMLA [Browne, De Pierro, 1996]
- ▶ EM with stopping criteria [Veklerov, Llacer, 1987]
- ▶ SIEVES [Snyder, Miller, 1985]
- ▶ MAP [Herman et al., 1979], [Sauer, Bouman, 1993], [Fessler, 1995]
- Multiresolution [Turkheimer et al., 1999], [Alpert et al., 2006], [Zhou et al., 2007],
- Spatio-temporal assumptions [Nichols et al., 2002], [Kamasac et al., 2005], [Reader et al., 2006], [Verhaeghe et al., 2008]

State-of-the-art 000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			22/32
Proposed	METHOD		
Criterion	Т		

$$\hat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^{NT}} \sum_{t=1}^{r} D_{\mathrm{KL}}(\alpha A y_t, z_t)$$

► $D_{\text{KL}}(\alpha A, z)$: minus Poisson log-likelihood (data fidelity term)

State-of-the-art 000000000	Proximal algorithms 00000	PET reconstruction $000000000000000000000000000000000000$	Conclusion 00
			22/32
PROPOSED	METHOD		

$$\hat{y} \in \underset{y \in \mathbb{R}^{NT}}{\operatorname{Argmin}} \sum_{t=1}^{T} D_{\mathrm{KL}}(\alpha A y_t, z_t) + \kappa \|Fy\|_1$$

- ► $D_{\text{KL}}(\alpha A \cdot, z)$: minus Poisson log-likelihood (data fidelity term) ► $F \in \mathbb{R}^{K \times NT}$: wavelet transform such that $F^*F = FF^* = \text{Id}$
- $\triangleright \| \cdot \|_1$: ℓ_1 -norm

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			22/32

$$\hat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^{NT}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_t, z_t) + \vartheta \mathrm{tv}(y_t) \right) + \kappa \|Fy\|_1$$

- ► $D_{\text{KL}}(\alpha A \cdot, z)$: minus Poisson log-likelihood (data fidelity term)
- ▶ $F \in \mathbb{R}^{K \times NT}$: wavelet transform such that $F^*F = FF^* = \text{Id}$
- $\triangleright \| \cdot \|_1$: ℓ_1 -norm
- tv: total variation

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			22/32

$$\hat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^{NT}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_t, z_t) + \vartheta \mathrm{tv}(y_t) \right) + \kappa \|Fy\|_1 + \iota_C(y)$$

- ► $D_{\text{KL}}(\alpha A \cdot, z)$: minus Poisson log-likelihood (data fidelity term)
- ▶ $F \in \mathbb{R}^{K \times NT}$: wavelet transform such that $F^*F = FF^* = \text{Id}$
- $\triangleright \| \cdot \|_1$: ℓ_1 -norm
- ▶ tv: total variation
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			22/32

$$\hat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^{NT}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_t, z_t) + \vartheta \mathrm{tv}(y_t) \right) + \kappa \|Fy\|_1 + \iota_C(y)$$

- ► $D_{\text{KL}}(\alpha A \cdot, z)$: minus Poisson log-likelihood (data fidelity term)
- ▶ $F \in \mathbb{R}^{K \times NT}$: wavelet transform such that $F^*F = FF^* = \text{Id}$
- $\triangleright \| \cdot \|_1$: ℓ_1 -norm
- ▶ tv: total variation
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint
- $\blacktriangleright \ \vartheta \ge 0 \text{ and } \kappa \ge 0$

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			22/32

$$\hat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^{NT}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_t, z_t) + \vartheta \mathrm{tv}(y_t) \right) + \kappa \|Fy\|_1 + \iota_C(y)$$

- ► $D_{\text{KL}}(\alpha A \cdot, z)$: minus Poisson log-likelihood (data fidelity term)
- ▶ $F \in \mathbb{R}^{K \times NT}$: wavelet transform such that $F^*F = FF^* = \text{Id}$
- ▶ $\|\cdot\|_1$: ℓ_1 -norm \leftarrow non differentiable
- ▶ tv: total variation
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint \leftarrow non differentiable
- $\blacktriangleright \ \vartheta \ge 0 \text{ and } \kappa \ge 0$

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			22/32

$$\hat{y} \in \operatorname{Argmin}_{y \in \mathbb{R}^{NT}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_t, z_t) + \vartheta \mathrm{tv}(y_t) \right) + \kappa \|Fy\|_1 + \iota_C(y)$$

- ► $D_{\text{KL}}(\alpha A \cdot, z)$: minus Poisson log-likelihood (data fidelity term)
- ▶ $F \in \mathbb{R}^{K \times NT}$: wavelet transform such that $F^*F = FF^* = \text{Id}$
- ▶ $\|\cdot\|_1$: ℓ_1 -norm \leftarrow non differentiable
- ▶ tv: total variation
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint \leftarrow non differentiable
- $\blacktriangleright \ \vartheta \ge 0 \text{ and } \kappa \ge 0$

State-of-the-art 0000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			23/32

$$\hat{y} \in \operatorname{Argmin}_{x \in \mathbb{R}^{K}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_{t}, z_{t}) + \vartheta \mathrm{tv}(y_{t}) \right) + \kappa \|Fy\|_{1} + \iota_{C}(y)$$

- ▶ tv: anisotropic total variation
- $\triangleright \|\cdot\|_1: \ell_1\text{-norm}$
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint
- ► $D_{\mathrm{KL}}(\alpha A, z)$: Poisson anti-log likelihood

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			23/32

$$\hat{y} \in \operatorname{Argmin}_{x \in \mathbb{R}^{K}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_{t}, z_{t}) + \vartheta \mathrm{tv}(y_{t}) \right) + \kappa \|Fy\|_{1} + \iota_{C}(y)$$

- ▶ tv: anisotropic total variation → Closed form for prox_{tv} after splitting
- $\blacktriangleright \| \cdot \|_1 \colon \ell_1 \text{-norm} \to \text{Closed form for } \operatorname{prox}_{\| \cdot \|_1}$
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint → Closed form for $\operatorname{prox}_{\iota_C}$
- ► $D_{\mathrm{KL}}(\alpha A \cdot, z)$: Poisson anti-log likelihood

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	0000000000	00
			23/32

Criterion

$$\hat{y} \in \operatorname{Argmin}_{x \in \mathbb{R}^{K}} \sum_{t=1}^{T} \left(D_{\mathrm{KL}}(\alpha Ay_{t}, z_{t}) + \vartheta \mathrm{tv}(y_{t}) \right) + \kappa \|Fy\|_{1} + \iota_{C}(y)$$

- \blacktriangleright tv: anisotropic total variation \rightarrow Closed form for $\mathrm{prox}_{\mathrm{tv}}$ after splitting
- ▶ $\|\cdot\|_1$: ℓ_1 -norm→ Closed form for $\operatorname{prox}_{\|\cdot\|_1}$
- ▶ $C \subset \mathbb{R}^{NT}$: convex constraint → Closed form for $\operatorname{prox}_{\iota_C}$
- ► $D_{\mathrm{KL}}(\alpha A \cdot, z)$: Poisson anti-log likelihood
 - \rightarrow closed form for $\operatorname{prox}_{D_{\mathrm{KL}}}(\alpha \cdot, z)$,

 $\Rightarrow \text{ NO closed form for } \operatorname{prox}_{D_{\mathrm{KL}}(\alpha A \cdot, z)} \text{ because } A \circ A^* \neq D$ (where *D* denote a diagonal matrix)

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000		24/32

How to compute $\operatorname{prox}_{D_{\mathrm{KL}}(\alpha A, z)}$?

- For every $m \in \{1, \ldots, M\}, \Psi_m \in \Gamma_0(\mathbb{R})$
- \bullet We can write

$$D_{\mathrm{KL}}(\alpha Ay, z) = \sum_{m=1}^{M} \Psi_m(\alpha A_{m,\bullet} y)$$

State-of-the-art 000000000	Proximal algorithms 00000	PET reconstruction $000000000000000000000000000000000000$	Conclusion 00
			24/32

How to compute $\operatorname{prox}_{D_{\mathrm{KL}}(\alpha A, z)}$?

- \mathbb{I}_r is a partition of $\{1, \ldots, M\}$
- For every $m \in \{1, \ldots, M\}, \Psi_m \in \Gamma_0(\mathbb{R})$
- \bullet We can write

$$D_{\mathrm{KL}}(\alpha Ay, z) = \sum_{m=1}^{M} \Psi_m(\alpha A_{m,\bullet} y)$$
$$= \sum_{r=1}^{R} \sum_{m \in \mathbb{I}_r} \Psi(\alpha A_{m,\bullet} y)$$

\bullet Choice of \mathbb{I}_r

State-of-the-art 000000000	Proximal algorithms 00000	PET reconstruction $000000000000000000000000000000000000$	Conclusion 00
			24/32

• Choice of \mathbb{I}_r : $A^{(r)} = (A_{m,n})_{m \in \mathbb{I}_r, 1 \le n \le N}$?

How to compute $\operatorname{prox}_{D_{\mathrm{KL}}(\alpha A, z)}$?

- \mathbb{I}_r is a partition of $\{1, \ldots, M\}$
- For every $m \in \{1, \ldots, M\}, \Psi_m \in \Gamma_0(\mathbb{R})$
- \bullet We can write

$$D_{\mathrm{KL}}(\alpha Ay, z) = \sum_{m=1}^{M} \Psi_m(\alpha A_{m,\bullet} y)$$
$$= \sum_{r=1}^{R} \sum_{m \in \mathbb{I}_r} \Psi(\alpha A_{m,\bullet} y)$$
$$= \sum_{r=1}^{R} \Psi^{(r)}(\alpha A^{(r)} y)$$

nclusion
24/32

How to compute $\operatorname{prox}_{D_{\mathrm{KL}}(\alpha A, z)}$?

- For every $m \in \{1, \ldots, M\}, \Psi_m \in \Gamma_0(\mathbb{R})$
- \bullet We can write

$$D_{\mathrm{KL}}(\alpha Ay, z) = \sum_{m=1}^{M} \Psi_m(\alpha A_{m,\bullet} y)$$
$$= \sum_{r=1}^{R} \sum_{m \in \mathbb{I}_r} \Psi(\alpha A_{m,\bullet} y)$$
$$= \sum_{r=1}^{R} \Psi^{(r)}(\alpha A^{(r)} y)$$

• Choice of \mathbb{I}_r : $A^{(r)} = (A_{m,n})_{m \in \mathbb{I}_r, 1 \leq n \leq N}$? containing non-overlapping and thus orthogonal rows of $A \Rightarrow \operatorname{prox}_{\Psi^{(r)} \circ A^{(r)}}$ takes a closed form (i.e. $A^{(r)} \circ (A^{(r)}) * \neq D$.

SIMULATED DATA: MATERIALS & METHODS

Simulated data - Materials

- ▶ PET 2D+time cerebral data [¹⁸F]-FDG HR+ scanner, based on Zubal cerebral phantom.
- ▶ 16 temporal frames, time: between 30 secondes and 5 minutes.

Events number: between 48 and 26804.

25/32

SIMULATED DATA: MATERIALS & METHODS

Simulated data - Materials

- ▶ PET 2D+time cerebral data [¹⁸F]-FDG HR+ scanner, based on Zubal cerebral phantom.
- ▶ 16 temporal frames, time: between 30 secondes and 5 minutes.
- Events number: between 48 and 26804.

Method

- ▶ PPXA: 400 iterations 10 s each.
- System matrix split is R = 432 subsets.
- ▶ Wavelets: symmlet filters length 6 on 3 levels (space) and 2 levels of Daubechies-6 on interval (time).
- ► EM-ML with/without post-reconstruction smoothing, PPXA with/without temporal regularisation.

1.5 - 2 min.

State 0000	e-of-the-art	Proximal algorithms 00000	ns PET reconstruction		Conclusion 00
					26/32
SI	MULATED D.	ata: Resu	LTS		
		EM-ML	Sieves	PPXA 2D	PPXA 2D+t
90 80 70 60 50 50 40 30 20 10					

1.5 - 2 min.

8 - 13 min.

State-of-the-art 0000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			27/32

SIMULATED DATA: MSE

Cortex					
Frame [min]	EM-ML	SIEVES	PPXA 2D	PPXA 2D+t	
1.5 - 2	22.4	0.52	0.19	0.12	
8 - 13	3.49	0.13	0.14	0.12	
43 - 48	2.54	0.16	0.18	0.16	
		Striatum	1		
Frame [min]	EM-ML	SIEVES	PPXA 2D	PPXA 2D+t	
1.5 - 2	18.6	0.39	0.11	0.08	
8 - 13	3.05	0.10	0.10	0.10	
43 - 48	2.23	0.10	0.10	0.10	

State-of-the-art 000000000	Proximal algorithms 00000	PET reconstruction	Conclusion 00
			28/32

SIMULATED DATA: TAC

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	000000000000	00
			28/32

SIMULATED DATA: TAC

State-of-the-art	
0000000000	

29/32

PRECLINICAL DATA: MATERIALS & METHODS

- ▶ Baboon 2D brain PET [¹⁸F]-FDG study on the HR+ scanner
- Prompt and delayeds stored separatly
- ▶ 128 time frames, from 10 to 30 second duration

State-of-the-art	
0000000000	

29/32

PRECLINICAL DATA: MATERIALS & METHODS

- ▶ Baboon 2D brain PET [¹⁸F]-FDG study on the HR+ scanner
- Prompt and delayeds stored separatly
- ▶ 128 time frames, from 10 to 30 second duration
- ▶ Sinograms rebinned into 16 time frames, from 80 to 240 second duration
- ▶ OP-PPXA: all corrections (except scatters) included in the model

4 - 6 min.

State-of-the-art 000000000	Proximal algorithms 00000	PET recon 000000000	struction 000●	Conclusion 00
				30/32
Preclinical	DATA: RESU	JLTS		
	FBP	Sieves	PPXA 2D+	t
500000.0- 400000.0- 300000.0- 200000.0- 100000.0- 0.0-	6	8	6	
		4 - 6 min.		
	*	100	8	

42 - 46 min.

State-of-the-art 0000000000	Proximal algorithms 00000	PET reconstruction	Conclusion $\bullet 0$
			31/32
CONCLUSIO	NT		

- Efficient method to reconstruct dynamic PET data and obtain parametric map
- ▶ Taking into account time-frame characteristics by considering **wavelets**
- Using Parallel ProXimal Algorithm
- Possibility to deal with a large panel of regularization terms and constraints
- ▶ Results presented on simulated and preclinical data

Future work:

- ▶ Impact of considering 16, 32, 64,... temporal frames for parametric map estimation
- ▶ Improve the convergence rate of the algorithm

State-of-the-art	Proximal algorithms	PET reconstruction	Conclusion
000000000	00000	00000000000	00
			32/32

Reference

- J. Verhaegue, D. Van De Ville, I. Khalidov, Y. D'Asseler, I. Lemahieu, and M. Unser. "Dynamic PET reconstruction using wavelet regularization with adapted basis functions." IEEE TMI, 27(7):943–959, 2008.
- F. C. Sureau, J.-C. Pesquet, C. Chaux, N. Pustelnik, A. J. Reader, C. Comtat, R. Trebossen, "Temporal wavelet denoising of PET sinograms and images." IEEE NSS, 6 pp., Dresden, Germany, Oct. 19-25 2008.
- N. Pustelnik, C. Chaux, J.-C. Pesquet, F. C. Sureau, E. Dusch and C. Comtat, "Adapted Convex Optimization Algorithm for Wavelet-Based Dynamic PET Reconstruction," Fully 3D, 4 pp., Bejing, Chine, Sept 5–10 2009.
- N. Pustelnik, C. Chaux, J.-C. Pesquet, and C. Comtat, "Parallel Algorithm and Hybrid Regularization for Dynamic PET Reconstruction," IEEE MIC, 4 pp., Knoxville, Tennessee, Oct. 30 - Nov. 6 2010.
- N. Pustelnik, C. Chaux and J.-C. Pesquet, "Parallel ProXimal Algorithm for image restoration using hybrid regularization," IEEE TIP, 20(9):2450–2462, Sep. 2011.
- S. Anthoine, J.-F. Aujol, Y. Boursier, and C. Mélot, "Some proximal methods for Poisson intensity CBCT and PET", Inverse Problems and Imaging, to appear, 2012.