

Optimisation du projecteur en reconstruction 3D TEP liste mode sur GPU

Julien Bert Laboratoire du Traitement de l'Information Médicale (LaTIM) INSERM UI 101, CHRU Brest

Equipe Imagerie Multi-modalité quantitative pour le diagnostic et la thérapie Dimitris Visvikis (DR2) Groupe Reconstruction Tomographique et Simulation Monte Carlo Julien Bert (IH) Awen Autret (Doctorant) Zakaria Bahi (Doctorant)

La reconstruction TEP liste mode

Liste mode DOII F DOI2 **D**2 **T**2 **F2** DOI3 ID3 **F**3 3 DOI4 ID5 **E5** DOI5 **T**5

Exploiter de l'informations supplémentaires

- meilleur échantillonnage

...

- correction des effets physiques
- correction des effets physiologiques

Reconstruction quantitative dans un contexte clinique

Contexte en TEP

Exemple - GE Healthcare

Reconstruction standard

Discovery PET/CT 600

IBM BladeCenter®

"Images disponibles avant que le patient n'ait quitté la table..."

Temps de calcul

Reconstruction quantitative

Graphics Processing Unit (GPU)

LÔTIM

Avantages du GPU

2 cartes graphiques x2 GPUs¹

46 processeurs² de x6 coeurs (276 coeurs)

- Puissance de calcul importante
- Faible coût (1/20)
- Faible consommation énergétique (1/20)
- Faible encombrement
- Pas de maintenance
- Installation facile

Architecture d'une carte graphique

Thread (unité de donnée)

SM 2

SM: streaming multiprocessors SP: streaming processor NVIDIA Fermi 16 SMs avec 32 SPs = 512 SPs

6

Inconvénients du GPU

Battlefield 3 - Electronic Arts 2011

Adapter à l'architecture !

Proposer de nouveaux paradigmes

Reconstruction TEP sur GPU

Reconstruction itérative LM-OSEM [Reader 1998]

System Matrix (SM)

La probabilité de détection d'une émission dans le voxel *i* par la LOR *j*

Inexploitable sur GPU (accès mémoire)

Décomposition de la SM [Qi1998]

$$\mathbb{R}^{M \times N} = \mathcal{P} + \mathcal{M}_{po} + \mathcal{M}_{pi}$$
Scapper

Patient physio+physique

Calculer la LOR à la volée par un projecteur

Reconstruction TEP sur GPU

Projecteur

Projecteur en reconstruction TEP

Algorithme de Siddon [Siddon 1985, Zao2002]

Implémentation GPU :

- pas la plus adaptée
- branchement conditionnel (divergence)
- mémoriser les intersections (mémoire)

Un algorithme plus simple ?

Projecteur en reconstruction TEP

Simulation Monte-Carlo

- GATE [Jan2011]
- scanner TEP Philips GEMINI [Lamare2006]

Cylindre rempli d'eau + ¹⁸F (5,3 kBq/cc)

Liste mode de 25.10⁶ coïncidences
 Liste mode de 25.10⁶ coïncidences

Mire de Foucault rempli d'eau + ¹⁸F (40 kBq/cc)

I mm

10 mm

3. Liste mode de 50.10⁶ coïncidences

Lamare et al., Phys. Med. Biol., 2006 Jan et al., Phys. Med. Biol., 2011

Acquisition de données cliniques

- TEP/CT GE Discovery DSTE
- étude ¹⁸F-FDG
- patient avec cancer du poumon
- liste mode de 50.10⁶ coïncidences
- image CT

Liste mode +

Données simulées du cylindre

Reconstruction :

- 3D LM-OSEM
- 141x141x45 voxels
- 4x4x4 mm3
- chaque fichiers LMI et LM2
- Siddon CPU, DDA CPU et DDA GPU

Mesure du Signal-to-Noise Ratio (SNR) [Lodge2010]

Pour le même projecteur

Reconstruction I

Reconstruction 2

$$m_{j} = (v1_{j} + v2_{j})/2$$

$$d_{j} = v1_{j} - v2_{j}$$

$$a_{i} = mean(m)$$

$$dsd_{i} = std(d)$$

$$SNR = \frac{\sqrt{2}}{S} \sum_{i}^{S} \frac{a_i}{dsd_i}$$

Lodge et al., Phys. Med. Biol., 2010

Données simulées de la mire de Foucault

Mesure du Contrast Transfer Function (CTF)

$$CTF_f = \frac{P_f^h - P_f^l}{P_f^h + P_f^l}$$

Reconstruction :

- 3D LM-OSEM
- 141x141x45 voxels
- 4x4x4 mm3
- Siddon CPU, DDA CPU et DDA GPU

Mesures cliniques

 r_h ROI tumeur (hot) r_b ROI poumon (background)

Reconstruction :

- 3D LM-OSEM avec
 - correction d'atténuation (CT)
- 127x127x47 voxels
- 4x4x4 mm3
- Siddon CPU, DDA CPU et DDA GPU

Contrast Recovery Coefficient (CRC)

$$CRC = rac{\overline{r_h} - \overline{r_b}}{\overline{r_b}}$$

Bruit (noise-SD)

$$noise_{SD} = rac{\sigma_{r_b}}{\overline{r_b}}$$

Résultats des projecteurs

Données simulées du cylindre

Siddon CPU

DDA GPU

Données simulées de la mire de Foucault

Siddon CPU

DDA GPU

Reconstruction	SNR	Contrast
CPU iSiddon	10.94	0.297
CPU DDA-ELL	10.57	0.471
GPU DDA-ELL	10.42	0.466

Résultats des projecteurs

LATIM

Données simulées :

- SNR équivalent
- contraste légèrement supérieur pour DDA
- meilleure résolution

Résultats des projecteurs

Données cliniques

Siddon CPU

DDA GPU

TA	BLE III	
MEASURES ON CLIN	ICAL RECONST	RUCTION
·		

0.143

0.158

0.151

0.864

0.858

0.862

TABLE II RECONSTRUCTION RUNNING TIME ON CLINICAL DATA

Reconstruction	Running time [s]	Speedup ref is 1.
1. CPU iSiddon	3124	×1
2. CPU DDA-ELL	288	×10.8
3. GPU DDA-ELL	22.5	×138.8

Données cliniques :

- bruit SD équivalent

1. CPU iSiddon

2. CPU DDA-ELL

3. GPU DDA-ELL

- contraste équivalent
- temps de reconstruction plus rapide
- résolution ?

Modèle des projecteurs

Volume de réponse en TEP

Volume de réponse en TEP

Les scanners récents incorporent la PSF : - HD-PET Biograph mCT Siemens

Reconstruction par System Matrix :

- mesures directes des PSFs dans l'appareil [Panin2006]
- simulation Monte-Carlo [Alessio2006]

Temps de reconstruction important Pas utilisable sur GPU (mémoire)

Modèle analytique Gaussien du VOR [Cui2011a]

Projecteur Gaussien [Ortuno2011, Cui2011b]

Modèle du VOR :

- pas de forme rectangulaire
- pas de diffusion
- échantillonnage des paramètres

Construction du VOR :

- lecture dans une table (mémoire GPU)
- construction complexe

Cui2011a: Cui et al., IEEE MIC, 2011 Cui2011b: Cui et al., Med. Phys., 2011 Ortuno et al., IEEE MIC, 2011

Intrinsic Detector Response Function (IDRF)

IDRF

Projecteur avec un modèle probabiliste (équivalent à un estimateur Monte-Carlo)

Estimation de l'IDRF par simulation Monte-Carlo (PET Philips GEMINI)

y

Ζ

Х

X

Modélisation 3D de l'IDRF (comprenant les cristaux voisins)

Fonctions à base d'exponentielle décroissante

Fonctions 2D à base d'exponentielle décroissante

Distribution 2D uniforme

Reconstruction du VOR

- tirages aléatoires en fonction de l'IDRF
- séparabilité des fonctions

Comparaison des projecteurs :

- modèle Gaussien
- méthode de Chen
- notre modèle complet

Nombre de lignes suffisamment important pour une bonne statistique

TABLE I ZNSSD (CLOSE TO 0% IS BETTER)			
VOR section	Gaussian	Chen	Our method
1. First	2.8%	4.3%	0.38%
2. Second	2.7%	6.1%	0.48%

TABLE I ZNSSD (CLOSE TO 0% IS BETTER)			
VOR section	Gaussian	Chen	Our method
1. First	2.8%	4.3%	0.38%
2. Second	2.7%	6.1%	0.48%

Conclusion

Impact de notre modèle dans une reconstruction TEP ?

- modéliser analytiquement l'évolution des paramètres de l'IDRF
- déterminer le nombre minimum de lignes par VOR
- impact d'un modèle avec diffusion ?
- temps de reconstruction ?
- comparaison des projecteurs ?
- travaux en cours (thèse Awen Autret)

Questions ?

Julien Bert Laboratoire du Traitement de l'Information Médicale (LaTIM) INSERM UI 101, CHRU Brest

Equipe Imagerie Multi-modalité quantitative pour le diagnostic et la thérapie Dimitris Visvikis (DR2) Groupe Reconstruction Tomographique et Simulation Monte Carlo Julien Bert (IH) Awen Autret (Doctorant) Zakaria Bahi (Doctorant)