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Abstract. This paper presents a semi-automatic method for tracking
the mitral valve leaflet in transesophageal echocardiography. The algo-
rithm requires a manual initialization and then segments an image se-
quence. The use of two constrained active contours and curve fitting
techniques results in a fast segmentation algorithm. The active contours
successfully track the inner cardiac muscle and the mitral valve leaflet
axis. Three sequences have been processed and the generated muscle out-
line and leaflet axis have been visually assessed by an expert. This work
is a part of a more general project which aims at providing real-time
detection of the mitral valve leaflet in transesophageal echocardiography
images.

Keywords: Medical Image Analysis, Tracking and Motion, Active Con-
tours, Ultrasound Imaging.

1 Introduction

The mitral valve is one of the four valves of the heart; its function is to keep the
blood flow in the physiological direction when the heart contracts. Due to various
pathological factors, a mitral regurgitation can occur. The work presented in this
paper belongs to a more general project of robot assisted surgery which aims
at repairing a pathological mitral valve in a context of microinvasive beating
heart surgery. The control of the robot is performed under ultrasound imaging
guidance and required robust and real time algorithms to segment the valve. This
project called GABIE is supported by the CNRS program ROBEA, and involves
4 laboratories (LIRMM, TIMC, LRP and CEA) and 2 University Hospitals (APH
Paris and University Hospital of Grenoble).

Although transesophageal echocardiography is the classical imaging technique
for mitral valve surgery, there is no satisfactory method allowing an automated
segmentation of the valve.
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The tracking of the myocardial border of the left ventricle (LV) is a very
active research area that makes intensive use of deformable models, ([1],[2]),
Markov random fields [3] or optical flow methods ([4],[5]). Data processed are
either in 2D+T or 3D+T ([6], [7], [8], [9] [10] ). [11] propose to use information
fusion to track the LV in echocardiography in real-time. His algorithm requires
a statistical shapes analysis of the LV, obtained by principal component analysis
(PCA) on a large number of LV shape. We think, these methods will not work
for the segmentation of the mitral valve leaflet, because of the high inter-patient
variability. Mikic [12] uses active contours to segment either the left ventricle or
the mitral valve leaflet. The method requires a manual segmentation on a image
of the sequence at the beginning of the procedure and estimation of the optical
flow field along the sequence. It takes about 20 minutes to process one complete
cardiac cycle (i.e � 25 to 30 images). [13] processes an image sequence using
wavelet packet decomposition (in 2D + T) and then selects the sub-bands (in
the wavelet domain) which preserve most of the energy of the target structure
with an acceptable Signal to Noise Ratio. These sub-bands are then recombined
to create the feature footprint ; this footprint is then used to analyze an image
sequence. Although this method seems to process an image sequence fast, the
analyzed sequences must not differ markedly from the data used to construct
the filters.

In this paper, we present a semi-automatic method (a manual initialization is
required) to segment the axis of mitral valve leaflet in transesophageal ultrasound
images. The proposed approach uses 2 active contours. The method is designed
to be fast and to achieve the segmentation in near real-time.

This work is intended to be the pre-operative step of the surgery scenario
and should provide semi-automatic segmentation of several mitral cycles. In
an intra-operative second step which is actually under development, the set of
segmentation obtained during the pre-operative step will be used to detect the
valve in real time. Therefore only near real time capability are required for the
pre-operative algorithm, in order to make it usable in a surgical context and
to achieve the repeatability condition of the mitral valve motion needed by the
intra-operative step (more details are provide in conclusion).

2 Material and Method

2.1 Context

The mitral valve is a left-sided valve located between the left atrium and the
left ventricle, made up of two fibrous membranes which are attached to the
left ventricle muscle through the mitral annulus. On the free edges of the two
leaflets, there are multiple strong cords (like parachute cords), in turn attached
to papillary muscles (reinforcement of the left ventricle wall). When the heart
contracts, the two leaves billow up to close off the opening between the left
atrium and the left ventricle. The closure mechanism is mainly passive according
to the pressure gradient between each side of the leaflet. During the contraction
of the left ventricle there is also a geometrical modification of the shape of the
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annulus. Although the cardiac muscle motion resulting of the heart contraction is
non rigid, it appear close to a rigid motion in one dimensional echocardiography
images. Therefore two major kinds of movements can be shown in these images:

– the leaflet movement (main component) which is non rigid but relatively
close to a rotation around a point based on the muscle-leaflet junction area
called junction point,

– the muscle movement which is approximately rigid with essentially transla-
tional components and small rotational components;

These movements can be used as an a priori knowledge in order to facilitate the
semi-automatic segmentation of the mitral valve in echocardiography.

2.2 Method

The proposed method relies on the use of two active contours (Figure 1) to
track the leaflet efficiently : one tracks the cardiac muscle and the other tracks
the mitral valve leaflet. The tracking method can be chronologically divided in
2 times:

1. the segmentation of the cardiac muscle,
2. the segmentation of the mitral valve leaflet

Each segmentation is realized in two steps :

1. rough segmentation using a curve fitting algorithm.
2. refinement using active contours.

This method allow us to solve two reluctant problems of the mitral valve tracking:

– the ability to track very fast motions.
– the ability to separate the valve snake of the muscle during the opening valve

phase.

The curve fitting algorithm providing rough segmentations, use measurements
along curves normals. Therefore some 1D image processing techniques are re-
quired to detect feature points on curves normals.

Muscle Active contour

Muscle-Mitral leaflet junction point

Mitrale leaflet Active Contour

Fig. 1. The two contours
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This paper is organized as follows: section 3 describes the method used to
build a rough segmentation of both mitral valve and cardiac muscle. Section 4
presents the proposed method to refine rough segmentation using snakes. Figure
2 presents the pipeline of our method, and sets up briefly the connection between
different section of the paper.
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Fig. 2. Synoptics of the proposed method

3 Rough Segmentation

In this section, we explain how a rough segmentation of the cardiac muscle (resp.
mitral valve leaflet) in the kth image is computed using the final segmentation
of the (k − 1)th image.

3.1 Curve Fitting Algorithm

The problem is to estimate the parameters of a transformation which minimizes
the distance between two curves. Making the assumption that curves are defined
by points stored in vectors: Q = [x(s), y(s)], then the relation between two curves
can be written as follows:

Qf = WX + Qi (1)

where Qf is the target curve and Qi is the initial one. W is the transformation
matrix and X the vector of the transformation parameters. The distance used
is the sum of square normal measurements that can be approximated by:

‖ Qf − Qi ‖2
n =

1
N

N∑

k=1

[(Qf (k) − Qi(k)).n(k)]2 (2)

≈
N∑

k=1

m(k)2 (3)
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where ‖ . ‖n denotes the norm based on normal measurements, n(k) is the normal
vector to the curve at the abscissa k, m(k) is the normal measurement computed
from 2D operator on normal profiles. Robustness to noise can be obtained by
using a regularization term so that the problem can be expressed as:

X̂ = arg min
X

(α ‖ X − X ‖2 + ‖ Qf − Qi ‖2
n) (4)

Solving Eq 4 in the least-squares sense is equivalent to a classical curve fitting
problem. Blake has proposed a recursive algorithm to solve this problem in [14].

3.2 Rough Segmentation of the Muscle

As explained in section 2 the cardiac muscle motion appears close to a rigid
motion in one dimensional images. Therefore, the rough contour position of the
cardiac muscle is estimated from the initial template (manual segmentation on
the first image) by translating it.

The rough contour for the image k is given by:

Q̃m
k = WmXm

k + Qm
0 (5)

where Xm
k is the transformation estimated (i.e. a translation) and

Wm
0 =

(
xm

0 0
0 ym

0

)
(6)

with 0 = (0, 0, . . . , 0, 0)T

The curve fitting algorithm requires feature detections on the curve normals.
Therefore it is necessary to process the gray-level profiles corresponding to these
directions in order to get the normal measurements.

A canny edge detector approximated by the derivative of the Gaussian kernel
(σ = 1.4) is used for this purpose.

3.3 Mitral Valve Leaflet Transformation Estimation

In this section, the abscissa of the junction point on the muscle curve at time
k − 1 is supposed to be given. It will be used as a rough estimate of the current
abscissa of the junction point. Given that the leaflet motion is close to be a
rotation around the junction point, this point must be invariant to the involved
transformation. For this purpose, the previous segmentation of the leaflet (after
refinement) is first translated on the junction point and then an affine trans-
formation without translations components is used for fitting. All computation
are made in a coordinate system centered on the junction point. In this way the
junction point is a fixed point (invariant to the involved transformation). The
computation of Q̃v

k is then given by:

Q̃v
k = W v

k−1.X
v
k + Qv

k−1 (7)
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where:

W v
k−1 =

(
xv

k−1 0 0 yv
k−1

0 yv
k−1 xv

k−1 0

)
(8)

and represents a 2D affine transformation matrix ; and Qv
k−1 represents the

mitral valve leaflet contour of the k −1th image translated to the rough junction
point of the kth image.

The presence of the mitral valve leaflet is characterized by a ridge in the
image, that corresponds to a local maximum in the gray-level profiles along the
normal directions. The second order derivative of a 1D Gaussian kernel is used to
detect the valve on normal curves. In fact this operator is a good measurement
of the contrast between two regions.

4 Refinements

4.1 Need for a Refinement

At the end of the previous step, the contours are in a neighborhood of feature
structures. Thus we have to bring them closer to the cardiac muscle (resp mitral
valve leaflet) ; This is done by using active contours.

Snakes has been originally introduced by Kass and al [15]. A snake contour is
described parametrically by v(s) = (x(s), y(s)) where x(s), y(s) are x, y coordi-
nates along the contour (the so-called snaxels) and s ∈ [0, 1] is the normalized
parametrization. The snake model defines the energy of a contour v(s), as:

Esnake =
∫ 1

s=0
λEInt(s) + EExt(s)ds (9)

where EInt is the internal energy of the contour, imposing continuity and curva-
ture constraints, and where EExt is the image energy allowing the snake to move
to the feature points in the image. λ is the regularization parameter governing
the compromise between adherence to the internal forces and adherence to the
external forces. An initial contour evolves by minimizing of the Equation 1.

4.2 Muscle Snake Energy Definition

The energy of the muscle snake is composed of two terms related to the internal
energy and one term related to the external energy.

Internal Energies. The 1st term is related to the length of the curve. It penal-
izes curves where the distance between two successive snaxels is far to a distance
dm which is computed at the beginning of the algorithm. This energy keeps the
length curve close to the initial one, and prevents the snake to segment the whole
cardiac muscle. This 1st term is written:

Em
Int1(si) = αm

1 (|si−1 − si| − dm)2 (10)

where αm
1 is a weighting parameter.



Fast Segmentation of the Mitral Valve Leaflet in Echocardiography 231

The 2nd internal energy term approximates the 2nd order derivative of the
curve. This term is computed from the ’cardiac muscle’ control points sm

i by
using the finite differences:

Em
Int2(si) = αm

2 | s(i − 1) − 2s(i) + s(i + 1) | (11)

where αm
2 is a weighting parameter.

External Energy. The external energy term is related to the modulus of the
gradient image. It allows the contour to move toward the cardiac muscle appear-
ing as an edge in the image. This energy term is given below:

Em
Ext(si) = − ‖ ΔI(si) ‖2 (12)

4.3 Mitral Snake Energy Definition

Because the movement of the mitral valve leaflet is a bit more complex than the
movement of the cardiac muscle, we introduce different energy terms.

Internal Energies. The internal energy is composed of the same energy terms
that for the muscle snake with weighting parameters αv

1 and αv
2 respectively for

the length constraint and the curvature constraint.

External Energy. The image of the leaflet corresponds to a local maximum of
intensity. Reasoning about the image intensity map as a surface in R3, features
corresponds to areas where one of the principal curvatures is high (Figure 3).
The image of the higher principal curvature allows us to build a robust external
energy function:

Ev
Ext(si) = K+(si) (13)

where K+ is the higher principal curvature.
In the actual implementation, principal curvatures are computed from eigen-

values of the Hessian matrix of the image intensity map.

a) b)

Fig. 3. a) Ultrasound image b) K+ of the image
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4.4 Dynamic Programming Minimization (DP)

The problem of energy snake minimization is solved using dynamic programming
(DP). Amini has proposed this method [16] in order to overcome the limitations
of classical variational methods like instability or non optimality and to allow
the use of stronger constraints without falling into a local minimum. When an
energy functional can be written as:

Esnake =
N−2∑

i=1

Ei(si−1, si, si+1) (14)

the minimization can be obtained using Dynamic programming as described
in [16].

The algorithm is iteratively applied to the contour. At each iteration, a snaxel
can move in a previously defined neighborhood (search area). DP allows us to
correctly minimize the energy function and provides a way to locate the junction
point on the muscle curve. The search-area for each snaxel of the muscle snake is
defined by a 8-neighborhood around the snaxel. We define the same search-area
for all snaxels of the mitral snake, except for the one (junction point) which is
connected to the muscle snake. For this one, the search area is defined by a region
of 8 pixels around its previous estimate and on the muscle snake curve. We do
not define an external energy term for this point. In this way, the junction point
will be only driven by its internal energy according to the position of the two
next snaxels and will be correctly adjusted to the muscle curve by continuity of
the leaflet curve.

5 Results and Discussion

5.1 Algorithm Initialization

The algorithm is initialized by the manual segmentation of both the muscle and
the mitral valve leaflet and by the specification of the junction point. The al-
gorithm then computes dm (resp dv) the mean distance between two successive
points of the muscle curve (resp of mitral curve). Manual segmentations influ-
ences the robustness and the accurency of segmentations. We have observed that
segmenting a large part of the cardiac muscle during the initialization improve
the robustness of the algorithm.

5.2 Results

The described method has been implemented using Matlab c© (and in Matlab
language). Dynamic programming algorithms has been coded in C using mex.
Snakes requires the tuning of some parameters : (αm

1 , αm
2 ) for the muscle snake

and (αv
1 , αv

2 ) for the mitral snake.
The processing time of our algorithm depends on the number of snaxels used.

In a general rule to obtain accurate segmentations, the mean processing time is
less 0.5 s and the number of iteration for the DP algorithm less than 10.
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Fig. 4. Processing of a sequence. Segmentation of the biggest leaflet.

The validation of the method is based on the visual assessment of an expert.
We have processed 4 sequences of 250 to 300 images. For each one, the medi-
cal expert is asked to segment the cardiac muscle, the mitral valve leaflet and
to point the junction point. The sequence is then processed with the proposed
method. The medical expert is then asked to give his opinion about the segmen-
tation proposed by the method. Most of the time (about 90% of the images),
the expert is very confident in the segmentation provided by the method. In the
remaining 10%, although the segmentation is ”bad” (and not absolutely false !),
the snake re-converges to a good contour in the next 3-to-6 images.
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5.3 Discussion

The proposed method still has some drawbacks. The main one is the tunning of
parameters. However the main objective of our algorithm is to provide a set of
segmentations that will be used during the intra-operative step where no tun-
ning of parameters is necessary. So, we could imagine trying several parameter
configurations in order to obtain a good tunning. Another point which could be
improved is the way we compute the principal curvatures which is known to be
noise sensitive [17] ; We are very confident in the near real-time possibilities of
this algorithm needed for the surgical scenario (sec. 1). From our experience,
converting algorithms from Matlab language to ’C’ language should divide the
processing time by a factor of 10. Other ’coding’ optimizations such the dynam-
ical selection of a ROI to process (instead of processing the whole image) should
speed up the image processing and thus allow a near real-time mitral valve leaflet
detection.

6 Conclusion and Future Work

In this paper, a method to rapidly segment the mitral valve leaflet in echocardio-
graphy has been presented. Due to the fact that the motion of the valve and the
motion of the muscle are quite different, we use two contours to capture these
motions. For each contours segmentations are realized in two step: first we use
a curve fitting technique to provide rough segmentation of the tracked contour
then we refine it by using a snake. As mentioned in the abstract, this work is
the first step of a two-steps procedures which aims at segmenting the mitral
valve leaflet in echocardiagraphic images. The presented method will be the pre-
operative step of the surgery scenario and will provide segmentation of several
cardiac cycles. During the intra-operative step, we should be able to segment in
real time the cardiac muscle and the mitral leaflet by searching the more similar
image in the pre-operative images and then applying a refinement to accurately
segment the mitral valve leaflet.
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