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Abstract. We present a new method for delineating the osseous interface in ul-
trasound images. Automatic segmentation of the bone-soft tissues interface is
achieved by mimicking the reasoning of the expert in charge of the manual seg-
mentation. Information are modeled and fused by the use of fuzzy logic and the
accurate delineation is then performed by using general a priori knowledge about
osseous interface and ultrasound imaging physics. Results of the automatic seg-
mentation are compared with the manual segmentation of an expert.

1 Introduction

In computer-aided orthopedic surgery (CAOS), the knowledge of the bone volume po-
sition and geometry in the operative room is essential. The usual way to acquire it is to
register pre-operative data, which were accurately acquired, to intra-operative data. A
recent way for acquire intra-operative data consists in the use of ultrasound imaging as
intra-operative imaging [ [2} [3]] because this imaging modality is inexpensive, riskless
and using a 6D localized ultrasound probe makes it possible to reconstruct the 3D shape
of a structure after its delineation. The accurate delineation of structures in ultrasound
images is still a very difficult task because of their very poor quality, i.e. low contrast,
low signal-to-noise ration and speckle noise. Therefore, extraction of features can be :

e manual but manual segmentation is known to be operator-dependent and ultrasound
images segmentation is difficult. This gives rise to uncertainty and inaccuracy of the
segmentation and errors may reflect on registration results.

e semi-automatic : several methods based on the successive use of usual image pro-
cessing methods such as contrast-enhancement, smoothing, edge-detection, mor-
phological operations [4, 5] have been proposed but such methods often fail be-
cause of the poor quality of ultrasound images and therefore an user-interaction is
required either to initialize the process or make the final choice.
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e automatic: automatic methods are either based on active contours for the delin-
eation of endocardial and epicardial boundaries of the heart ([6,[7]) or bone segmen-
tation ([8, O]) ; or are based on the multimodal registration of ultrasound datasets
within more discriminant modalities such as CT [10] or MRI [[11]. Compared with
bone segmentation in ultrasound images,[2, 3} [12]] belong to this last category of
method. Moreover, in regards to orthopaedic CAS, the methods proposed in the
literature are specific to a part of the human body : vertebrae [3]], pelvis [12].

We propose a fully automated method designed for the delineation of the bone-soft
tissues interface in ultrasound images based on information fusion. Data available in
images are modeled and fused relatively to knowledge about the physics of ultrasound
imaging. Expert’s reasoning process is then mimicked in order to accurately delineate
the osseous interface.

2 Material

Ultrasound imaging is achieved using a linear US probe, 25 mm large, working at a fre-
quency of 7.5 MHz. The probe is localized in 3D space by an optical localizer. The US
probe is calibrated according to the technique described in [[13]] (the pixel size is about
0.1mm/pixel). The position of an image pixel is known in 3D space with a precision in
the range of the optical localizer (i.e. Imm) (see [[14] for details on the reconstruction
of 3D shape from localized ultrasound images). Image size is 640x480 pixels and a
subimage (214 x422) is extracted before processing.

3 Method

In this section, we introduce the expert’s reasoning and the way we mimic it in order to
achieve the segmentation of the osseous interface.

3.1 Expert’s Reasoning

Several information, based on the physics of the ultrasound imaging and on anatomy,
can be used to delineate the osseous interface in ultrasound images :

1. bones appear to be hyper-echoic,
the amplitudes of the US echoes are proportional to the difference between acoustical
impedances caused by successive tissue layers and in the case of bone imaging, the great
difference of acoustical impedance between bones (Zpone ~ [3.65 — 7.09] x 108 kg/m2/s )
and the surrounding soft tissues (Zsoft tissues ~= 1.63 X 108 kg/mg/s) generates an impor-
tant echo.

2. bones are said to ’stop’ ultrasound waves,
this is due to the high absorption rate of bones which is about 10 dB/cm/MHz whereas the
absorption rate for soft tissues is less than 2 dB/cm/MHz.

3. the reflection is almost completely specular,
only interfaces perpendicular to the direction of the ultrasound beam will reflect so features
of interest appear to be composed of horizontal (or near horizontal) parts.
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4. bone surfaces do not present major discontinuities
and therefore the found osseous interface should be as smooth as possible.
5. among an osseous interface, the contrast appears to be homogeneous.

The proposed method achieves the fusion of these information in 3 stages :

e first, an image processing step aims at modeling the information available in the
images and then concentrate them into one image representing the membership of
the pixel to a given property. This step models and fuses points 1,2 and 3 cited
above.

e Then the computation of the continuousness cost function which purpose is to ex-
tract continuous osseous interfaces from the fuzzy image.

e Finally, we compute the optimal osseous interface from the candidates found at the
previous step by choosing the one that ensures an osseous interface among which
the contrast is maximum and homogeneous.

3.2 Image Processing Step

The image processing aims, in a first step, at modeling the information available in the
image. Then the data fusion step concentrates the information in order to produce an
image whom the value of a pixel represents the membership of the pixel to a property.

Fuzzy Intensity Image This stage attempts to model the first information listed above :
bones appear to be hyper-echoic i.e. bright pixels constitute an indication of the location
of the osseous interface, but is not an absolute criteria and consequently, the fuzzifica-
tion function have to give an important (resp. low) membership value to bright (resp.
dark) pixels.

In a previous development [15], we pointed out that binarizing the initial ultrasound
image using the Otsu’s threshold (To¢s.) gives a good approximation of the echogenic
area and so, of the position of the osseous interface.

We make use of this information to build the fuzzification function y,,, : the criterion
(we call Voygy : Figllhb, solid curve), needed to compute Ty, is used as follows : first,
Votsw is normalized and cumulated (Fig[Ilb, dotted curve) and it is then shifted in order
to force the membership function value : 1, ,(T,,,.) = 0.5.

Processing this way, the fuzzification function (Fig[Itb, dashed curve) is closed to the
well-known S-function [16]. Finally, we apply the described fuzzification function over
the gray-level image in order to construct the fuzzy intensity image!| F'11 (p) (Fig[ic)
which gives for a pixel p of the intensity image its membership degree to the echogenic
area.

Fuzzy Gradient Image The transition from soft tissues to bone suggests to search for
highly contrasted areas and so the fuzzy gradient image F'GI(p) is of great interest.
The computation of the gradient image is a way to model informations 2 and 3 because
it allows us :

Mlustrating images have been cropped to half their length since the other half is a dark area
and brings no information (the whole image is processed)
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Inensyimage Fuzzicaton P

(a) ultrasound image (b) intensity (b) Fuzzy Intensity
fuzzification function Image F'I1(p)

Fig. 1. Computation of Fuzzy Intensity Image (¥'II) from the original ultrasound image

e to detect features which have a particular direction by using a directional edge de-
tector,

e and to get an information about the gray-level transition.

We use a 5x5 ’horizontal-direction” MDIF edge detector which is first-order derivative
filter obtained by the convolution of the 4-connexity 3 x3 mean lowpass filter with the
Prewitt’s derivative kernels. It allows us to select areas presenting horizontal (or near)
contrast. Thresholding this image allows us to keep only areas where the transition
occurs from bright-to-dark pixels (Fig.[2l-a).

Finally, we use the S-shape function to perform the fuzzification of the gradient image
and obtain the Fuzzy Image Gradient FGI(p) (Fig.2tb). The parameters of the S-shape
function are computed such that S(z) is the closest s-shape function to the normalized
cumulative histogram.

Data Fusion The data fusion step aims at concentrating all the information in order to
produce a single membership value for each pixel of the analyzed image to the osseous
interface. For our purpose, a pixel may belong to the osseous interface if both its gray-
level and gradient are "high’. This combination is naturally achieved by a ’conjunctive-
type’ combination operator min ; therefore the membership of a pixel to the osseous
interface is given by :

FI(p) = min(FII(p), FGI(p)) (1

FI(p) denotes the global degree of membership of a pixel to an echogenic and
highly contrasted area.

3.3 Determination of the Osseous Interface

According to the expert’s reasoning, the optimal threshold described a continuous in-
terface where the local contrast is maximum and homogeneous. For each membership
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(a) Gradient Image (b) Fuzzy Gradient Image F'GI(p)

Fig. 2. Gradient image and Fuzzy Gradient Image of the ultrasound image shown in
FigMa

Fig. 3. Fusion Image

degree 0 < p < 1 (u space is discretized with a step J,, = 0.005), the defuzzification of
FI(p) is performed and the continuousness of the profile is evaluated. We then choose
the membership degree which maximizes the local contrast and its homogeneity, and
also ensures a local maximum continuity of the profile.

In this section, we present the defuzzification process which aims at extracting from the
fuzzy image F'I(p) the osseous interface related to a membership degree 4, .. We then
explain the way we measure the continuity of a given osseous interface and finally we
explain the way we compute an objective function which will allows us to determine
the optimal membership.

Defuzzification Process To achieve this task, we make use of a priori knowledge about
the physics of ultrasound imaging : as mentioned earlier, ultrasound imaging enhances
the difference between acoustical impedances and because of the great difference of
the acoustic impedances of the bone and its surrounding soft tissues, almost the entire
ultrasound wave is reflected at the surface of the bone so that no imaging is possible
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beyond it. Dealing with that in image processing, this means that, for a column of the
image, the pixel of the osseous interface related to a membership value 1, , is the last
(from the top) pixel which has a membership equal or greater to y, .. At the end of
this defuzzification process, at the most one pixel by column is highlighted. The ’curve’
described by these pixels is called profile in the rest of the paper.

Evaluation of the Continuousness of the Profile As we mentioned earlier, actual
osseous interfaces do not present discontinuities and therefore, the osseous interface we
detect should be as smooth as possible. We use this property to determine the optimal
defuzzification threshold by computing a function that reflects the continuousness of a
computed osseous interface.

The measure of the continuousness of a profile is achieved by applying the wavelet
transform to it : the wavelet transform decomposes the profile with a multiresolution
scale factor of two providing one low-resolution approximation (A;) and one wavelet
detail (D1). We then apply the wavelet transform to A; and get a second order low-
resolution approximation (As) and wavelet detail (D5). The Detail signals are then used
to quantify the discontinuities of the original profile. Experimentally, we choose the
Daubechies-4 wavelet basis (several others basis have been tested and no dependence
was pointed out at the exception of the Haar Basis). The wavelet decomposition of the
profile is performed twice. To reject small interfaces (4/5 pixels) detected when the
membership value used for the defuzzification is unsuitable (i.e. when it is too high),
we add a penalization term related to the length of the profile (Pen). The ’amount’ of
discontinuities in the profile is computed as follows :

e(n) = E(D1) + E(D2) + Pen (2)

where E(s) represents the energy of a signal s(¢) and is computed by :

B(s() = = 3 s(t)? 3)

n -
1=0

Finally, () is normalized (i.e. () is linearly scaled from [,i, — Emaz] to [0-1])
and we compute the continuousness of the profile as :

Clp) =1—e(n) 4)

As one can see (Figlla), the continuousness function C'(u) presents several local
maxima. Each of them locates a membership degree p where the associated profile is
more continuous than the profiles of its neighbors and so each of them may be the opti-
mal defuzzification threshold. We detect them by computing the watershed transform of
C(p). For each local maxima, the image is defuzzed to the corresponding membership
degree p and the local contrast is computed.

Local Contrast Computation For each pixel p belonging to a profile (i.e. the pixel p
is highlighted after the defuzzification process related to a given ), the local contrast
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Fig. 4. Objective Functions

LC(p) is computed between the above and the underneath areas of 10 pixels long. The
local contrast associated to the pixel p is computed by :

B Up — Down

LC(p) = =—=————
2 Up+ Down

&)
where Up (resp. Down) is the mean value of the above (resp. underneath) area. This
definition of the local contrast gives us a way to determine whenever the pixel p is in the
vicinity of the osseous interface because the bone appears in the image as a ’light’ area
followed by a ’dark’ area i.e. a positive local contrast. We then obtain a cost function
Contrast(u) related to the global contrast along the profile and defined by :

Contrast(p) = Z LC(p) (6)
p

Because the contrast along the profile is homogeneous, we also compute a measure of
the homogeneity of the contrast along the profile. This is achieved by computing the
standard deviation of the values of the contrast along the profile (this criterion was used
as homogeneity measure by [[I7]) and gives us a function StdDev(u)

Optimal Defuzzification Threshold Determination The optimal membership degree
WOptimal 1S chosen so that it maximized C'ost () (Figldhb) defined by :

1

Cost(n) = Contrast(u) + g o s

(N

4 Results

The method was originally designed for sacral osseous interface delineation. Because
the method tries to reproduce the expert’s reasoning and because the a priori informa-
tion we make use are not specific to a part of the human body, the method appears to
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be usable on ultrasound images of different bones which are in relationship with vari-
ous current research projects in CAOS. This section first presents the results of sacral
images segmentation and then shows some results of vertebrae images segmentation.

4.1 Sacral Images Segmentation

The proposed method has been tested on ultrasound images of sacrum coming from
cadaver datasets or patient datasets : about 250 images have been processed. For each
image, the manual segmentation of the expert is available and constitutes our bronze-
standard.

For each image within a dataset, we compute the differences between the manual seg-
mentation and the segmentation computed by our method per image column. We then
compute the mean error for each image (Table[I}column 1) and the Hausdorff distance
and mean absolute distance (average of all the maximum errors within a subset) (Ta-
ble [MFcolumn 2). In order to evaluate the ability of the proposed method to delineate
the osseous interface in strongly corrupted images, we also compute the Signal-to-MSE
ratio (Table[l-column 3), which corresponds to the classical Signal-To-Noise ratio com-
puted in the case of additive noise, and is defined as [18§] :

Zf; S'i2

S/mse = 10 x log1o( ——"=——
/ 10(2521 (S — 8,2

) ®)

where

S is the original image
S represents the denoised image
and K is the number of pixels (i.e. 90308 for a 214 x 422 image).

S is obtained by filtering S with a 5x5 median filter. As one can easily see from Equ.[8]
the less S/mse ratio, the noisier the image.

Segmentation
Error Max Errors Simse
Dataset mean/SD (pixel) | mean/max (pixel) mean/sD (dB)
Patient 1 (51 images) 7.808/ 1.995 12137 122 505270185
Patient 2 {49 images) 8807 /3177 16.905 7 25 520670425
Patient 3 (69 images) 4 54513 874 17.0789 /1 35 5.905 /0283
Cadaver 1(37 images)| 3.495/1.931 9,830/ 36 8786702340
Cadaver 2 (41 images)| 2673/ 1456 7.294 /19 9.019/0.259
Cadaver 3 (39 images)| 4.056/3.213 1214/ 38 7984 70177

pixel size is 0.112mm x 0.109mm

Table 1. Segmentation errors
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As one can see (table[I)), as compared to the manual delineation of the expert :
o the mean error of segmentation is always less than 10 pixels (i.e. Imm) even on highly
corrupted images. However, it is clear that the accuracy of the delineation is correlated
within the amount of noise and therefore, we think that taking into account the noise
(measured by the S/sme ratio by example) during the fusion and/or delineation process
may be a way to improve the delineation. This could be done by weighting the Fuzzy
Intensity Image values by a factor depending on the noise (as described in [19]).
e The maximum error still remains substantial but, according to us, it is not the error
we should focus on : we point out that these errors occur at more or less one pixel on
complex shapes (such as medial sacral crest or sacral hiatus) giving thus an important
maximum error relatively to the manual delineation but the overall error on the global
shape still remains negligible and has very limited impact on the registration step which
follows.
e The proposed method is also sufficiently fast to be used during the intra-operative
stage of a CAOS : the time needed to delineate one image is less than 4 s. The processing
of large datasets such as Patient 3 takes about 4 minutes (on a standard PC, Pentium
III-800Mhz) whereas it took more than 30 minutes in the case of a manual delineation
(according to [20]).

4.2 Spine Image Segmentation

42 images of the L4-vertebra were acquired on a healthy volunteer and processed. In
order to see a large part of the spinous process, we use a linear US-probe of 80 mm large
working at a frequency of 7.5 MHz. The image size is 768 x576 pixels and a subimage
(346 x467) is extracted before processing and one image is processed in less than 6 s.

Fig. 5. vertebra image segmentation

One can clearly recognize the spinous process on Fig.[Bla and Fig[5lb. The over-
all shape of the vertebra is also clearly visible on Fig.[Blc which is a 3D point cloud
computed from the delineation of the vertebra surface in the ultrasound images.
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5 Discussion

Recently, lots of methods dedicated to the indirect delineation of the bone surface in
ultrasound images have been proposed in the literature |3, |12, 21]] but these methods
have not been tested on real patients’ datasets yet. Moveover, the ultrasound imaging is
constrained by the use of a mechanical system [3,|21] ; and a good initial estimation of
the rigid registration matrix between the CT and US datasets is often required to achieve
the bone surface segmentation in the ultrasound images [2,/12].

The method described in this paper does not require neither a dedicated ultrasound im-
ages acquisition system nor an estimation of the rigid registration matrix between the
CT and US datasets to perform the delineation of the osseous interface in ultrasound
images. Moreover, it has been extensively tested on images acquired on cadavers (about
120 images) and on real patients (about 170 images).

Although the method is sensible to noise, the mean errors are still acceptable : we mea-
sure a maximum mean error of 8.8 pixels (i.e. 0.8 mm) with a S/mse ratio of 5.206 dB
which corresponds to a highly corrupted image (according to [[18]).

We think that an important point have also to be made clear : the validation, based
on the comparison to a single expert segmentation, may appear limited. However, seg-
menting bones on ultrasound images is very unusual for physicians and it is difficult to
find several expert users. Moreover, gold-standard does not exist and tests on phantoms
or isolated bones would not allow to draw conclusion and we then consider that this
evaluation is just a first step.

Finally, we did not notice any dependence of the accuracy to the visualization param-
eters tuning, i.e. the different gains (proximal, distal) the physician can play with to
enhance the contrast of the image on the ultrasound scanner. The only condition is that
the osseous interface should not get bogged down in noise and according to us, it is an
acceptable condition since the physician has to validate the images during the acquisi-
tion stage and this validation can only be done if he is able to localize approximatively
the osseous interface.

6 Conclusion

In this paper, we present a method for automatic delineation of the osseous interface in
ultrasound image. The method is based on the fusion of the pixels intensity and gradient
properties in a first step and then on the fusion of information extracted from the physics
of ultrasound imaging and a priori knowledge.

Tests were performed with images coming from patients or cadaver studies. The method
has been used to delineate osseous interface in ultrasound images of the sacrum which
may present several shapes ; we also use it to delineate the osseous interface in vertebrae
images and good results were obtained in all cases so that it’s independent of the shape
to be recovered and that’s why we think that the described method is a first step toward
robust delineation of the osseous interface in ultrasound images.
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