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Abstract. Reachability analysis has recently proved to be a useful tech-
nique for analysing the behaviour of under-specified biological models.
In this paper, we propose a method exploiting the eigenstructure of a
linear continuous system to efficiently estimate a bounded interval con-
taining the time at which the system can reach a target set from an
initial set. Then this estimation can be directly integrated in an existing
algorithm for hybrid systems with linear continuous dynamics, to speed
up reachability computations. Furthermore, it can also be used to im-
prove time-efficiency of the hybridization technique that is based on a
piecewise-linear approximation of non-linear continuous dynamics. The
proposed method is illustrated on a number of examples including a bi-
ological model.
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1 Introduction

Linear differential systems of the form ẋ(t) = Ax(t), where A is a n× n matrix
with real coefficients, constitute an important class of differential systems for
which symbolic solutions are known. They have the form x(t) = exp(At)x0,
where x0 is an initial condition. An option is to compute numerically the matrix
exponential at each time step. Another option is to write down explicitly the
analytical expressions of the components xi(t) in terms of the eigenvalues and
eigenvectors of A. In this paper we present an approach to take advantage of
the eigenstructure of the matrix A to speed up reachability computations of
linear systems. Furthemore, it can be applied to improve the time-efficiency of
the dynamic hybridization of nonlinear systems [4].

The general idea is to use the analytical expressions of x(t) to estimate the
time intervals over which it is certain that the linear system from a given initial
set does not reach a given fixed set. Knowing in advance that no such collision is
possible over these time intervals allows avoiding some computations over these
intervals, for example the intersection of the reachable set and some guard set, or
even accurate computations of flowpipes (sets of trajectories). The intersection
computation cost growing very fast with the number of dimensions, we need
a method to avoid those computations for complex problems. If reachability
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analysis is greatly used for cyber-physical applications, it is less the case for bio-
logical applications because of the complexity of most of the biological systems.
However, with improvements to speed it up, reachability analysis will become
a powerful tool to check properties, and evaluate the robustness of biological
models.

The rest of the paper is organized in two main parts. We begin the first part
by presenting some preliminaries and the algorithm to estimate a set of time
intervals, called Reachability Time Domain (RTD). Some experimental results
are then described. Then we adapt the method of estimating RTD to speed
up the dynamic hybridization of nonlinear systems. The adaptation is applied
to a biological model, which shows the usefulness of the method in terms of
gain in computation time. In the last section we describe related works which
also exploit the eigenstructure of linear systems, and outline some directions for
future work.

2 Reachability Time Domain Estimation

2.1 Preliminaries

In this section we consider a linear differential system:

ẋ(t) = Ax(t) (1)

where A is an n× n matrix with real coefficients, and x ∈ Rn. We assume that
the matrix A is diagonalisable in C or, in other words, matrix A has n distinct
eigenvalues Λ = {λ1, . . . , λn}, and n associated eigenvectors V = {v1, . . . , vn}.
If some of the eigenvalues are complex, then they occur in complex conjugate
pairs (λ, λ̄). We consider that there are r real eigenvalues, and c pairs of complex
conjugate eigenvalues, such that Λ = {λ1, . . . λr, λr+1, λ̄r+1, . . . , λr+c, λ̄r+c} (the
associated real and complex eigenvectors are indexed accordingly). Obviously,
n = r + 2c.

In this situation (distinct eigenvalues), a basic theorem of linear algebra states
that the matrix A can be put in block-diagonal form with blocks not bigger than
2×2. More formally, (v1, . . . , vr, Im(vr+1), Re(vr+1), . . . , Im(vr+c), Re(vr+c)) is
a basis of Rn (by abuse of language we will call it the eigenbasis of A), the matrix

P =
[
v1 . . . vr Im(vr+1) Re(vr+1) . . . Im(vr+c) Re(vr+c)

]
(2)

is invertible, and P−1AP = diag[λ1, . . . , λr, Br+1, . . . , Br+c], where Bj is a 2×2
real matrix

Bj =

[
Re(λj) −Im(λj)
Im(λj) Re(λj)

]
. (3)

The notation diag[bj ] stands for a block-diagonal matrix with the elements bj
(bj is either a real scalar, or a real 2× 2 matrix) on the diagonal.

Now consider two convex H-polytopes 3 Inito and Ro in Rn. In the following
section, Inito represents the set of initial conditions and Ro the target set. The

3 H-polytopes are polytopes defined by a set of linear constraints.
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reachability problem we address now can be formulated as the following question:
does the system (1), from the initial set Inito, ever reach the target set Ro? If
the answer to this question is yes, then the first time the system enters the target
set is denoted treach (see Definition 2 below).

Since we want to exploit the analytical solutions of the system (1), from
now on we work in the eigenbasis. This means that the two polytopes have
to be transformed as follows: Init = P−1Inito and R = P−1Ro (Init is the
set of initial conditions, and R the target set, expressed in the eigenbasis). The
Fundamental Theorem for Linear Systems [12] states that for x0 ∈ Rn the initial
value problem for the equation (1) and x(0) = x0 has a unique solution for all
t ∈ R which is given by x(t) = eAtx(0).

For t ≥ 0, let E(t) = {eAtx(0) | x(0) ∈ Init}. With this notation:
E(0) = Init, and E(t) = eAtE(0). From the computational point of view, the
computation of x(t) can be reduced to the computation of the exponential of a
matrix, and to do so numerous algorithms are known [3]. In addition it is known
that the image of a convex polytope by a linear operator is a convex polytope.

Definition 1. We define the reach time interval Toverlap as the set of times t
for which E(t) intersects with R (under the condition that such an intersection
occurs, otherwise Toverlap = ∅).

Toverlap = {t | E(t)
⋂
R 6= ∅} (4)

Definition 2. If Toverlap is not empty, we define the reachability time treach ∈
R+ as the first instant t for which E(t) intersects R.

treach = min{Toverlap} (5)

Definition 3. Let T be a union of disjoint time intervals. T is said to be a
Reachability Time Domain (RTD) if treach (when it exists) does not belong to the
complement of T , then T satisfies: Toverlap 6= ∅ =⇒ treach ∈ T . Obviously, the
largest RTD in all cases is R+, and the smallest is {treach} when R is reachable
from Init. Note that Toverlap is also an RTD.

We can now restate informally our goal as follows: we want a fast algorithm
to compute a useful RTD T . It would be for example useless to give R+ as
an answer. On the other hand, one could design an algorithm which computes
treach directly by using reachability computation, and of course this is not what
we intend to do here. The idea is to perform fast computations to determine an
RTD T . Since by construction E(t) cannot intersect R on the complement of T ,
then it is possible to avoid the test whether E(t) intersects R for all time t in the
complement of T . Thus the computation of T is rewarded by avoiding heavier
computations.

2.2 Algorithm for Reachability Time Domain Estimation

We take advantage of the fact that, as mentioned above, the matrix P−1AP is
block-diagonal in the eigenbasis, a block being just a scalar (in the case of a real
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eigenvalue) or a 2× 2 submatrix (in the case of a pair of complex eigenvalues).
This means that the system (1) can be decomposed into smaller subsystems of 1
or at most 2 variables. Remember that we assume in this work that all eigenvalues
are distinct. The principle of our method is to use the analytic expressions of the
solutions, expressed in the eigenbasis, and to make simple over-approximations
of the convex polytopes E(t) and R in order to work on 1-dimensional or 2-
dimensional projections.

The algorithm is divided in three parts: first, the exploitation of the real
eigenvalues; second, the radial motion associated to the complex eigenvalues;
third, the rotation motion associated to the complex eigenvalues. Since the dif-
ferential system is decoupled when expressed in the eigenbasis, the time infor-
mation extracted from the projections are independent one from the other. One
could thus choose to exploit only the information associated with the real eigen-
values (assuming there is at least one). This would provide an approximation
of RTD. But of course exploiting also the information associated with the com-
plex eigenvalues provides additional constraints and generally leads to a smaller
RTD.

Recall that λi for i ∈ {1, . . . , r} are the real eigenvalues of A, and that (λi, λ̄i),
i ∈ {r + 1, . . . , r + c} are pairs of conjugate eigenvalues.

Part 1. We first extract information from the real eigenvalues. The case of
complex eigenvalues (presented in the next two parts) is a generalization of the
basic idea presented here.

We consider each real eigenvalue λi, and its associated eigenvector vi. The
analytic solution along this axis is: yi(t) = eλityi(0). Now we define proj(P, i) as
the function that gives the projection of the polytope P on the ith real eigenvalue
subspace (subtended by vi), and we call Ti the time interval during which the
intervals proj(E(t), i) and proj(R, i) overlap. The time interval Ti is defined
formally by:

Ti = {t | (eλitproj(Init, i))
⋂
proj(R, i) 6= ∅} (6)

The bounds tmini and tmaxi of Ti (i ∈ {1, . . . , r}) are easily computable as we
will see shortly. If R is reachable from Init then it is clear that the time of the
first encounter treach belongs to all Ti (because the point of contact between the
two polytopes belongs to all the projections).

We define accordingly T real as the intersection of all the time intervals asso-
ciated with real eigenvalues:

T real =
⋂

0≤i≤r

Ti (7)

From what we have just said, T real is an RTD. Let us call outer(X) the
smallest box containing the polytope X. Note that, from its definition, T real is
bounded if at least one Ti is bounded. Note also that even if there is a point of
contact between outer(E(t)) and outer(R) at some time t, we cannot conclude
that R is reachable from Init, since working on projections amounts to over-
approximating the polytopes by boxes (in the subspace subtended by the real
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eigenvectors). In other words, if T real is not empty, we cannot be sure that R
is reachable from Init. But we can be sure that if R is reachable, then treach
cannot be outside T real. This is true independently of the existence of complex
eigenvalues. In addition, if a Ti is empty then we can conclude immediately that
R is unreachable.

Now concerning the computation of the bounds tmini and tmaxi of Ti, we con-
sider a point yi(0) belonging to proj(Init, i). If the configuration is such that yi(t)
moves toward R, and the origin 0 does not lie between yi(0) and proj(R, i) then
it is trivial to compute the time at which yi(0) will reach proj(R, i). As an exam-
ple, we consider the following case: λi < 0 (the trajectories in this 1-dimensional
subspace converge to 0), we suppose that proj(R, i) = [zi,min, zi,max] is strictly
above 0, and yi(0) > zi,max. Then the entry time of this point is given by: tmini =
(1/λi) ln(zi,max/yi(0)), and the exit time by: tmaxi = (1/λi) ln(zi,min/yi(0)). The
logarithm is negative and consequently the computed times are positive, as ex-
pected. The key property here is the monotonicity of the function eλit. This is
just an example and a number of cases must be considered depending on: the
sign of λi, the relative position of proj(E(t), i) and proj(R, i), and the position
of the origin with respect to these intervals. Depending on the case, Ti may be
empty (meaning that R is unreachable and thus the problem is solved); it may
be bounded as in the above example; or it may be semi-infinite ([tmini ,−∞]). The
lower and upper bounds of T real are: tlb = maxi{tmini } and tub = mini{tmaxi }
(if at least one tmaxi is finite).

Consider now the case where the origin 0 belongs to the box over-
approximation outer(R) of the target set R. If there is a real eigenvalue λi which
is negative, then the points of (eλitproj(Init, i)) never exit proj(R, i) after en-
tering in it, and consequently tmaxi is infinite. We would like to obtain a bounded
interval which is an RTD. If at least one real eigenvalue λi is positive (and 0
does not belong to outer(Init)), then tub as defined above is finite. If all the
real eigenvalues are negative more work is required to get a bounded RTD. Two
subcases need to be considered when all the real eigenvalues are negative. Either
0 belongs to R, or 0 belongs to outer(R) but not to R itself (we assume here that
0 does not belong to the boundary of R). In the first subcase we define a box
containing 0 and contained in R, which we call inner1(R). We then apply the
same method as above, just replacing the outer box by the inner box inner1(R):
tinner1i is defined as the time at which proj(E(t), i) makes the first contact with
proj(inner1(R), i), and tinner1 = maxi{tinner1i }. If t ≥ tinner1 then at least one
point of the moving polytope E(t) has entered the inner box inner1(R). Since it
is included in R this point is necessarily inside R. This time tinner1 thus occurs
necessarily after treach, and can thus be taken as an upper bound for treach:
tub = tinner1. In the second subcase, where 0 belongs to outer(R) \ R, we de-
fine a box containing 0, contained in outer(R), and disjoint from R. We call
inner2(R) a box having these properties. The time tincli is defined as the time
at which proj(E(t), i) is completely included in proj(inner2(R), i), and globally
tincl = maxi{tincli }. If t ≥ tincl then the moving polytope E(t) is completely
included in the inner box inner2(R), and due to the monotonicity property,
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it will always remain in it. The box inner2(R) being disjoint from R, R can-
not be reached after tincl. Consequently treach, if it exists, is necessarily smaller
than tincl. We conclude that tincl can be taken as an upper bound for treach:
tub = tincl.

Similar reasoning can be made if 0 belongs to Init (or to outer(Init) \ Init)
and all the real eigenvalues are positive (case where all the tmaxi ’s are infinite).
The cases are too numerous to give the details here, but in the end it is only
under very special conditions that the RTD resulting from the presented method
is unbounded.There are basically two classes of conditions for which the above
method may not provide a bounded RTD: (i) there exists only one real eigenvalue
λi and it is equal to 0 (the corresponding component yi is constant); (ii) there
is a projection i such that 0 is at an extremity of proj(R, i) and λi is stricly
negative (or 0 is at an extremity of proj(Init, i) and λi is stricly positive).

The core of this part of the algorithm is straightforward: first compute
outer(R); if 0 does not belong to outer(R), then perform the following loop
for i ∈ {1, . . . , r}:

– compute tmini and tmaxi ;

– keep the value of this tmini if it is greater than the current stored value;

– keep the value of this tmaxi if it is smaller than the current stored value.

If 0 belongs to R (resp. if 0 belongs to outer(R) \ R) and if all the real eigen-
values are negative, then compute an inner box inner1(R) (resp. inner2(R)).
Then perform a similar loop in which tinner1 (or tincl depending on the case) is
computed instead of tmaxi , and the maximum value is retained at each step.

Part 2. Now we consider pairs of complex conjugate eigenvalues (λj , λj). Each
such pair is associated to a 2 × 2 submatrix Aj . A trajectory defined by this
matrix (and an initial condition) in the corresponding eigenplane is a spiral,
or a circle if Re(λj) = 0, and can be decomposed into a radial and an angular
component. To exploit this decomposition we use polar coordinates and we over-
approximate the sets proj(R, j) and proj(I, j) by sectors (interval description in
a polar system). In this second part we extract time information from the radial
evolution of (the projection of) moving set.

The polar coordinates of a point x in the eigenplane associated to (λj , λj) are
noted (γ, θ). E being a polytope in Rn, we define the radial part of proj(E, j) by:

Γj(E) = {γ(x) | x ∈ proj(E, j)} (8)

The sets Γj(Init) and Γj(R) are intervals and we apply the same method as
in Part 1. We compute for each pair j ∈ {r+ 1, . . . , r+ c} of complex conjugate
eigenvalues the time interval Tj where the sector approximation of proj(R, j) is
reached following the radial decomposition of the motion. If there exists a pair
of eigenvalues j, such that Tj is empty then, R is unreachable. Else, we compute
T rad the intersection of all the Tj for j ∈ {r + 1, . . . , r + c}. Again, if T rad is
empty then R is unreachable.
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Tj = {t | (eRe(λj)tΓj(Init))
⋂
Γj(R) 6= ∅} (9)

T rad =
⋂

r+1≤j≤r+c

Tj (10)

The upper bound of the interval T rad can be infinite. The conditions under
which this occurs are similar to those of Part 1. If the real part of all the complex
eigenvalues is equal to zero, then the point trajectories lie on a product of circles
(the radii depend on the initial conditions and are constant). If in addition the
intersection of this set with R is non empty, then the upper bound of T rad is
infinite.

It is clear that the set T real∩rad defined as the intersection of T rad and T real

is an RTD. If T real∩rad is empty, then R is unreachable.

T real∩rad = T rad
⋂
T real (11)

The computation of T rad is similar to that of T real in Part 1.

Part 3. In this last part, we extract time information from the angular motion
of the reachable set. For each complex eigenvalue pair j ∈ {r + 1, . . . , r + c}
we define, θj(E(t)) the angular representation of the projection of the polytope
E(t) on the complex plane (a circular arc). Then we compute T angj the union of
time intervals representing all the instant t for which

θj(E(t))
⋂
θj(R) 6= ∅.

Because of the periodicity of the angular motion, we describe T angj by the first
interval and the period πj .

T angj = { t | θj(R)
⋂
{eBtx0 | x0 ∈ θj(Init)} 6= ∅} (12)

where

B =

[
Re(λj) −Im(λj)
Im(λj) Re(λj)

]
.

The theoretical output is the intersection of all these unions of time intervals
and T real∩rad:

T ang =
⋂

r+1≤j≤r+c

T angj (13)

Combining all the information, the final output is:

T final = T real∩rad
⋂
T ang (14)

In practice, the intersection to compute T ang is done on the fly. It is possible,
mathematically, that the periods πj are not commensurable. In such a case, the
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trajectories are quasiperiodic, and T ang is an infinite union of intervals. The
implementation handles only floating-point numbers and consequently this case
is not considered.

We can thus compute the lower common multiple of all the periods, which
will be the global period Π of the system (note that Π can be very large). Then,
even if T real∩rad is not bounded (which is a very special case), the computation
of T ang is finite in time, and T final can be easily represented as a finite union
of time intervals, and the period Π.

Fig. 1. This figure shows the different steps to construct the T final union of intervals
for a 6-dimensional example with two real eigenvalues, and two pairs of conjugated
complex eigenvalues.

2.3 Experimental Results

We performed two sets of experiments: the goal of the first one is to evaluate
the time-efficiency of the method, and the goal of the second is to evaluate the
efficiency of the method in terms of speeding up reachability computations. The
experimentation was done on an Intel Pentium 4 3.60Ghz, with 2 GBytes of
memory.

The first set of experiments were carried out on randomly generated systems
of dimensions 50 and 200, and the average computation times are around 4s and
654s respectively. The main cost of the computation comes from the computation
of the box over-approximations of the initial set and of the target set.

Besides the box approximations and their projections, the computation of the
lower bound of the reach time is fast (0.005s for the systems of 200 dimensions),
which shows the advantage of working on low dimensional projections.
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The second set of experiments was carried out on a helicopter model with 28
variables, which is a benchmark treated by the tool SpaceEx [1]. The initial set is
defined by xi = 0.1 for 1 ≤ i ≤ 8, and ∀i{1, . . . , 28} : xi ∈ [10−10−6, 10 + 10−6].
We searched for the time at which the system reaches a target set defined by
∀i{1, . . . , 28} : xi ∈ [−2, 2]. Our method found a reachability time at t = 655.
This result, which is clearly smaller than the exact reach time because of the
over-approximations, allowed reducing the total reachability computation time.
Indeed, to compute the reachable set from the the initial up to the time point
t = 655 SpaceEx took 397s, while our computation of the reach time took only
0.241s; thus we reduced the computation time by roughly (397− 0.241)s.

We can see that our method is useful in improving time-efficiency of the
existing reachability algorithms, especially when the time to reach the target set
from the initial set is large. In addition, to improve the accuracy of our method,
the boxes may need to be subdivided, as done in [6]. Another way is to compute
around the initial set the largest box that does not intersect with the target set,
and then use a variant of our method for computing a lower bound on the time
at which the system leaves the box. This variant is described in Section 3.

3 Application to Dynamic Hybridization

Another application of our method of reachability time domain estimation is to
speed up the reachable set computation for non-linear differential systems us-
ing dynamic hybridization [5, 4]. The main idea of hybridization is to construct
around the current set a domain, called hybridization domain, within which the
non-linear system is approximated by an affine system with uncertain additive
input. The input here is used to account for the approximation error. When
the trajectory set is inside the domain, the affine approximate system can be
used to yield the analysis result for the original system with some guaranteed
bounded error. To compute the reachable set of the linear approximate system
inside each domain, we can use a variety of existing techniques (such as [7] and
see references there in). Basically most of these techniques are based on a dis-
cretization of time into a set of consecutive small time intervals, and in each
step the reachable set is approximated for the corresponding time interval. It
is important to note that as soon as the trajectory set leaves the domain, this
approximate system is no longer valid and a new domain and a new approximate
system need to be constructed. We can see that “hybridization” here means ap-
proximating a non-linear system by a piecewise-linear system (which is a hybrid
system). The hybridization technique requires therefore checking the validity of
the current approximate system by testing whether the trajectory set is not en-
tirely included in the current domain. To avoid this intersection test, we can
estimate a lower bound on the first exit time, say τe, and for any time t < τe the
system is guaranteed to stay inside the current domain and no intersection test
is needed. After the time τe, either we stay with the current approximate system
and perform intersection tests, or we construct a new hybridization domain and
a new approximate system.
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To estimate a lower bound on the exit time, we adapt the method for reach-
ability time domain estimation (described in the previous section), and we then
show how the time-efficiency of the reachable set computation can be enhanced
by avoiding the intersection test at each step.

3.1 Dynamic Hybridization

First we recall the dynamic hybridization technique[5, 4]. We consider the fol-
lowing autonomous non-linear system:

ẋ(t) = f(x(t)) (15)

where x ∈ X ⊆ Rn is the state variables and Init ⊂ X is a set of initial states.
The essential idea of the hybridization technique is as follows. It first con-

structs a simplicial domain∆ containing the initial set and inside∆ the dynamics
f is approximated by an affine system l. For all x ∈ ∆:

l(x) = Ax+ b (16)

where A is a matrix of size n × n and b is a vector in Rn. The error bound µ
between the original dynamics f and the approximate one, a, is:

µ = max
x∈∆
‖f(x)− l(x)‖∞ (17)

This bound is used to define the input set Uµ ⊂ Rn:

Uµ : {u | u ∈ Rn ∧ ‖u‖∞ ≤ µ} (18)

To obtain a conservative approximate system, an input u is added to the
above affine system. For all t such that x(t) ∈ ∆, the non-linear system can be
over-approximated by the following affine system with input:

ẋ(t) = A(x(t)) + b+ u(t), u(t) ∈ Uµ, x(t) ∈ ∆ (19)

We denote the above system as (∆, l, U). It is of great interest to estimate a time
τe such that before that time: the trajectory of the approximate affine system
is guaranteed to stay within the hybridization domain. To this end, we need to
adapt the algorithm for reachability time domain estimation, which is explained
in the next section.

3.2 Exit Time Prevision

From now on, we work in the transformed basis, as defined in section 2.1, with
the domain ∆ (centered around the current set X) and the approximate system
calculated as in (19).

To estimate a lower bound on the time at which the system intersects with
the domain boundary ∂(∆), we adapt the technique presented in the previous
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section. This adaptation should take into account the presence of uncertain input
in the approximate dynamics. We recall that the domain ∆ is a simplex.

The main idea is still to project on low dimension spaces associated with
either the pairs of conjugated complex eigenvalues, or the real eigenvalues. To
cope with the over-approximation due to the low dimension projection, we will
use box under-approximation of the domain to stay conservative.

Complex eigenvalues For each pair of conjugate complex eigenvalues, we
consider their 2-dimensional subspaces. We consider the radial evolution of the
projected system to bound the exit time. To do so, we need an inner-ball approx-
imation of the domain ∆, and then we search for the time at which the current
set leaves this ball, by considering the radial evolution of the system.

Let j be the jth pair of complex conjugated eigenvalues. Let c be the centroid
of Init. We construct B(c, ρb), the biggest ball centered at c and contained in
∆ and let Bj = proj(B(c, ρb), j) be the projection of this ball on the pair j of
the corresponding dimensions, and cj = proj(c, j). Let Aj be the matrix in this
2-dimensional system.

We are now working in a 2-dimensional subspace. We perform a translation
of the coordinate subsystem so that cj ∈ R2 becomes the origin in the new
coordinate system. Let z = y − cj , where y is the variables of the 2-dimensional
subsystem. In this new coordinate system, the dynamics of z is given by:

ż(t) = Ajz(t) + uc + u(t), u(t) ∈ Uµ (Ez)

where uc = Ajcj . The solution of (Ez) is:

z(t) = eAjtz(0) +

∫ t

0

eAj(t−τ)uc dτ +

∫ t

0

eAj(t−τ)u(t) dτ (20)

The exit time is the solution given by:

texit = min(t : ||z(t)|| ≥ ρb)

To compute this time, we need a good over-approximation of I =∫ t
0
eAj(t−τ)u(t)dτ . To do so, we use a time discretization of step h and pro-

ceed from time t = 0 until ||z(t)|| ≥ ρb . Under the uncertain input, the solution
can be over-approximated by:

‖z(t)‖ ≤ ‖eAjtz(0) +A−1j (eAjt − I)uc‖+ ‖
∫ t

0

eAj(t−τ)u(t)dτ‖

We can prove [8] that this integral I for the interval [0 ; h] is bounded by:

||I|| ≤ h ||Aj || eh||Aj || (2
µ

||Aj ||
+ (

1

2
+ h)||z(0)||). (21)
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Fig. 2. Complex eigenvalues: we search for the intersection between the inner circle of
the domain and the radial evolution of the system (in the basis centered at uc). We
use a stepwise computation, and in this example the intersection is found at t = 3h,
with h the time step.

Real eigenvalues Now we show how to handle real eigenvalues. The projec-
tion of the simplex on one dimension creates a large over-approximation of the
domain. To keep a conservative approximation, we find a single box under-
approximation B = inner(∆) of the simplex, using the algorithm in [2], and
centered at the centroid of the initial set Init. Similarly let BX = inner(X)
where X is the current set.

Let projr be the operator of projecting a set on the dimensions corresponding
to the real eigenvalues. Once a box under-approximation B of ∆ is determined,
we can now use the projection of Br = projr(B) on each dimension associated
with each real eigenvalue λi. Let the projection proj(Br, i) be represented by two
constraints xi ≤ M and xi ≥ m where m,M ∈ R. As previously in Section 2.2,
we can easily compute a lower bound on the exit time for the system without
input, and then for the system with input, by replacing ||Aj || in (21) by λi.

3.3 Dynamical Hybridization with Exit Time Prevision

In the dynamic hybridization [13], the domains are dynamically constructed. Our
exit time prevision method can be integrated in the hybridization algorithm to
avoid polytopic inclusion tests (which in general require solving LP problems).

The main steps of the original hybridization algorithm are as follows. Given
an initial Init. For each iteration, the algorithm performs the following steps.
First, we compute an approximation domain ∆ and its associated linear approx-
imate system (∆, l, U) as in (19). We then compute the reachable set Rn from
R using the step-by-step algorithm with the time step h. We test if newReach
intersects with the boundary ∂(∆) of ∆. If so, we discard the set newReach.
Otherwise, we continue with the next iteration.
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Now we explain how the above-described exit time prevision method allows
reducing the number of intersection tests between the set Rn and the boundary
∂(∆), by predicting a lower bound τe on the exit time (see Algorithm 1). If τe is
not larger than the time step, that is τe ≤ h, we ignore this result and use the
original algorithm (with intersection test at each step) until the next domain is
needed. Otherwise, we can compute the reachable set for the linear approximate
system (∆, l, U) without intersection test until τe.

Algorithm 1 Hybridisation with Exit Time Prevision.

1: function Reach((Init, f, h))
2: Reach = ∅
3: t = 0
4: R = Init
5: repeat
6: (∆, l, U) = Domain(R, f)
7: τe = ExitT imePrevision(R,∆)
8: if (τe > h) then
9: /* Computing the reachable set without intersection test */

10: for all t ≤ τe do
11: Rn = LinReach(R, l, U, h)
12: Reach = Rn ∪Rn
13: R = Rn
14: t = t+ h
15: end for
16: else
17: /* Computing the reachable set with intersection test */
18: newDomain = false
19: repeat
20: Rn = LinReach(R, l, U, h)
21: if (Rn ∩ δ(∆) = ∅) then
22: Reach = Reach ∪Rn
23: R = Rn
24: t = t+ h
25: else
26: newDomain = true
27: end if
28: until newDomain
29: end if
30: until t ≥ tmax

31: return Reach
32: end function

3.4 Experimental Results

To show how the hybridization algorithm with exit time prevision (HPA) is more
time-efficiency than the original hybridization algorithm (HA) [13], we used the
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7-dimensional polynomial biological model Dictyostelium discoideum [10], also
used in [13]. This model, extracted from the molecular network, describes the
aggregation stage of Dictyostellium, and its spontaneous oscillations during its
development process. The equations are given bellow and the parameters value
can be found in [10].

d[ACA]

dt
= k1[ERK2]− k2[ACA]

d[PKA]

d
t = k3[internal cAMP ]− k4[PKA]

d[ERK2]

dt
= k5[CAR1]− k6[ERK2][PKA]

d[REG A]

dt
= k7− k8[REG A][ERK2]

d[internal cAMP ]

dt
= k9[ACA]− k10[REG A][internal cAMP ]

d[external cAMP ]

dt
= k11[ACA]− k12[external cAMP ]

d[CAR1]

d
t = k13[external cAMP ]− k14[CAR1][PKA]

We studied the oscillating behaviours of the process. In fact, our reachability
results show that for some initial states, the system can stop oscillating. This
behaviour can be seen on the Figure 3.4 representing the evolution of the variable
CAR1 in function of the variable internal cAMP .
Again, the experimention was done on an Intel i7 720QM quad core 1.60Ghz,
with 4 GBytes of memory. The reachable set computed by HPA are coherent with
the one computed by HA, and they can be seen in Figure 3.4 and Figure 3.4. If
we compare the total execution times, for 2000 iterations, HPA took 88 seconds,
while HA took 128 seconds. The gain is 31.25%. HPA still needs intersection
tests when the estimated exit time is smaller than the time step h (at about
5% of the total number of iterations), but these tests took on 0.43s, while HA
needed 7.21s for intersection tests. The total time of exit time estimation was
0.24s.

Using the exit time estimation, we greatly reduced the computation time
of the intersection detection. As future work, we plan to reduce the domain
computation cost by using domains which are rectangular in the eigenbasis to
reduce over-approximation due to the low dimension projections.

Conclusion
The essential idea of the methods presented in this paper is to extract time
information from the symbolic expressions of the components xi(t) expressed
in the eigenbasis of the matrix A of the linear system. Our goal is to compute
what we call an RTD. This allows, in a set-based simulation or a reachability
analysis, to skip the parts of the time domain which corresponds to the com-
plement of the computed RTD. Consequently it can be seen as an acceleration
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Fig. 3. The picture shows the projection on the plan (CAR1, internal cAMP) of the
reachable set computed with [13] implementation.

Fig. 4. The picture shows the projection on the plan (CAR1, internal cAMP ) of the
reachable set computed with the new implementation.
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technique that can be integrated in reachability tools (for example SpaceEx or
[13]). The authors of [9] used the symbolic expressions of the components xi(t)
expressed in the eigenbasis, but in a very different way. Their goal is to define
new decidable classes of linear hybrid systems. Their method, based on quantifier
elimination, applies when either A is nilpotent, or its eigenvalues are either all re-
als or all purely imaginary. Although important from the theoretical viewpoint,
these classes are too restricted for practical problems. The work [11] is closer
to our approach. It also uses also analytical solutions xi(t) (in the eigenbasis),
and makes a piecewise linear approximation of the natural logarithm function
on the real axis in order to find linear relations involving time and state vari-
ables. In that way it produces an abstraction of the solution (called time-aware
relational abstraction), and then use bounded model checking to verify the lin-
ear hybrid systems. The abstraction can be refined by increasing the number of
points in the piecewise linear approximation. The recent paper [6] describes a
safety verification tool for linear systems also based on the idea of using symbolic
expressions of the components xi(t). Their goal is to perform safety verification
using a counterexample guided abstraction refinement (CEGAR) procedure. So
their goal is different from ours, and consequently the way they exploit the time
information contained in the xi(t) components is different, too. At the present
time they use only the real eigenvalues, and plan to extend the approach to what
they call quadratic eigenforms. This will allow them to extract time information
from the real part of complex eigenvalues. In the present work we exploit the
time information contained in real eigenvalues, and in the real and imaginary
part of the complex eigenvalues. However, because of rough approximation of
the initial set and target set in our methods, the application to solve the linear
reachability problems suffers from some precision loss. Our future plan includes
an improvement of the precision by using a more refined approximation for these
sets, and by compensating the precision loss due to the projection. Combining
both the dynamic hybrization technique and the linear reachability methods will
give a powerful reachability tool which is also valid for non-linear systems.
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