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Abstract—This paper aims at warning modellers in systems
biology against several traps encountered in the modelling of
Boolean thresholded automata networks, i.e. the Hopfield-like
networks that are often used in the context of neural and
genetic networks. It introduces a new manner based on inverse
methods to conceive such models. Using these techniques, we
re-visit the model of regulatory network of Arabidopsis thaliana
morphogenetic network. In this context, we discuss about the
non-uniqueness of models, on a possible taxonomy of the set of
valid models and on the sense of the relative size of the basin of
attractions within or between these models.

I. INTRODUCTION

In the present paper, in the first part, we discuss prin-
cipally of the methodological paradigms that usually drive
the understanding of biological regulatory networks. Nowa-
days, biological complexity (in the sense of modelling and
computational complexity) and the necessity to ask correctly

the biological question by using the best theoretical repre-
sentations, is an evidence. The democratization in biology
of modelling techniques and tools coming from mathematics
or computer sciences is a consequence of this quest for the
understanding of biological complex systems and it led to the
development of numerous models and many breakthroughs in
biology. However, their pragmatical and often naive use is
dangerous and many traps hide from the researchers. Here,
we raise the problem of the good use of formalisms and
that of the non-uniqueness of consistent models in biological
representations of regulatory networks in the case of Hopfield-
like networks. The so-common trial-error approach (a trial-
error looping process) that reaches only one solution of model
lets indeed the biologist believing in the uniqueness of this
solution in the context of the available knowledge. We will
show that a constraint-based approach (an inverse method)
is infinitely more adapted to the search for valid models of
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Boolean thresholded regulatory networks.
A second part is devoted to the taxonomic classification of

the set of valid models into homogeneous groups of models
based on robustness criteria. We discuss the importance of the
size of basins of attraction and their relation to the robustness
of biological systems. The regulatory network of Arabidopsis
thaliana flower morphogenesis, as modelled by Mendoza et al
[1], is chosen to illustrate these points. This very interesting
work constitued a real advancement in the understanding of
A. thaliana flower morphogenesis. However what we discuss
here about their paper (their modelling approach and the for-
malism they used) is very emblematic of biological modelling
nowadays.

In addition to introducing new features in the search for
valid models in the context of Hopfield-like networks, our
paper is a warning to the modellers, especially biologists,
against the apparent simplicity and universality of application
of this formalism.

II. FORMALISM AND METHODOLOGICAL
CONSIDERATIONS

A. Trial–error vs constraint-based approaches

Unless having a detailed knowledge on the kinetics of
the studied system, the modeller often starts by the elab-
oration of a model of network based on the formalization
of a qualitative experimental knowledge. This knowledge is
composed of two aspects : the structure of the network (the
nodes and their interactions) and its dynamics (stationary or
transitional states). These aspects are dual since the one can
be obtained from the other on condition that the knowledge is
complete. The most common approach is to see the dynamics
of the network as the result of its structure. In an experi-
mental context the knowledge is always incomplete making
its modelling difficult and subject to discrepancy. A classical
method (Fig. 1 Top) is to formalize the a priori knowledge
concerning the structure of the network, and then, by using
a trial-error looping process, to try to converge towards an
optimal model that minimizes, by comparison, the error with
the experimental observations on the dynamics. The learning
process of artificial neural networks based on a cost function
corresponds to this approach. All the set of parameters can
be explored so as to check the behaviour of all possible
models. Monte carlo methods, sequential simulated annealing
or genetic algorithms can be also used to explore the set
of models and find one of them that fits with the expected
– experimentally observed – behaviour, ’The Optimal One’.
Rapidly, one will realize the expensive computational cost of
this approach. Moreover it does not guarantee the complete
adequacy of the ’solution’ to the experimental knowledge : one
can find a model that minimizes the error between simulated
and experimental dynamics, but nothing guarantees that it is
absolutely conform to the observations.

A declarative approach (like in Fig. 1 Bottom) was proposed
by [2], [3] as an alternative to this trial-error process in
the context of Thomas’ networks [4]. These networks take
into account the cellular context in which the interaction

occurs. This implies the existence of multivalued arcs that
represent the different possible kinetics between two entities
(chemical species) as a function of their concentration levels.
Its application to the re-examination of an existing model
of the nutritional stress in Escherishia coli allowed to show
an incoherence of the obtained model. Experimental data are
indeed not exhaustive and, in consequence, the intuitions of
the modeller constitute, in case of critical uncompleteness, a
considerable contribution for determining solutions. The re-
examination of the model by this declarative approach could
reject an intuition and propose automatically an alternative.

Such an approach is a potential link between structure
and dynamics of the network. The works realized by [5]–[8]
focus particularly on the relations between regulatory network
structure and dynamics, in the case of Hopfield-like networks,
but also on the robustness of the dynamics obtained depending
on the update modes of the network (parallel, sequential,
bloc-sequential) [5]–[8]. In the same context (Hopfield-like
networks), we developed a similar constraint-based approach
in order to guarantee the flexibility of the modelling process
and the adequacy of the obtained solutions [9]–[11]. The
knowledge concerning the structure and the dynamics is for-
malized in the form of a series of constraints. Then, a query in
the normal conjonctive form is defined [12] and submitted to a
satisfiability solver [13]–[16]. We obtain, without defining any
cost function, a set of valid instances of models (that can be
empty in case of thin consistency), i.e. they are all in adequacy
with experimental data (structure and dynamics).

Fig. 1. The modelling approaches (Top) The classical trial-error approach
starts with data on interactions between the elements (e.g. genes) of a supposed
network, and via a trial–error and validation looping process one progressively
gets closer to the fitness corresponding to the experimental knowledge on the
dynamics. At the end, only one model is selected by using a certain criterion of
optimality. (Bottom) On the contrary, the constraint-based approach, starting
from the global knowledge, i.e. both structural and dynamical knowledge,
does not need any trial-error and validation looping process. From that global
knowledge converted into a series of constraints, a logical formula is written
that defines the space of consistent models. All models in this space are
equally valid.

489



B. Hopfield-like networks

Biological regulatory networks are often abstracted as in-
teraction graphs. They are modelled in the form of Boolean
– automata – networks composed of nodes representing the
components of the system (genes, proteins, cells) linked to-
gether by oriented arrows indicating the relationships between
them. Boolean automata networks (introduced by Kauffman
to study global properties of genetic nets [17]) are among
the most used models in biological modelling of regulatory
networks. Hopfield-like network formalism (Fig. 2) is based
on a Boolean thresholded automaton. This model is similar
to Hopfield’s model [18] but it is more flexible since there
are no conditions of symmetry imposed on the weights and
self-interaction loops are authorized. A collection of two–state
(but it can be extended to n-valued) and thresholded nodes is
in interaction. Interactions are encoded in the form of arcs
linking two nodes in a directional way. Each arc has a certain
strength called weight that will determine the nature of the
interaction. The update of the node states is determined by
a test called transition function implying a target node and a
set of efferent nodes acting on it : the sum of the products of
efferent state values and the weights of the connecting arcs is
compared to the threshold of the target node ; when superior,
the state of the node changes.

W =

 1 1 2
0 0 0
1 1 0



θ =

 1
0
0


Activation :

∑n
j wij .Sj > θi

θ1

θ2 θ3

w31

w32

w13

w12

w11

Fig. 2. Hopfield-like networks. Hopfield-like networks, inspired from
Hopfield’s formalism for neural networks but more flexible, are composed
of n nodes of state Si having a threshold of activation θi. The arcs are the
relations of inhibition or activation and their strengths are noted wij . When the
sum of efferent states Sj modulo the weights wij of the arcs is superior to its
threshold θi, the target node i is activated. The Hopfield’s transition function
is given at the bottom of the figure. The example given here corresponds to
the case Wij ≥ 0 and θj ≥ 0. One of its behaviours is a cycle of length 2
(100↔001).

C. A formalism is an abstraction that cannot represent the
overall knowledge

When working on the Arabidopsis thaliana flower morpho-
genesis regulatory network (see below), we discovered that
some relations in the Hopfield-like model of this network
by Mendoza et al [1] were not well-founded. In fact, the
authors tried to inject all the available biological knowledge
in their model, including the relative levels of expression of
the different genes. We point out that this is not possible
in a Boolean thresholded automaton. Comparing the weights
of different lines in the interaction matrix is absolutely non-
sense in this formalism [19] and generates some unsatisfiable

situations. For example, if one consider some of the constraints
given by Mendoza et al [1] (see Fig. 4) like a > b > l > 0,
then a > 2 ; however, the weight a plays a role in a regulation
composed by 3 elements (on gene 4 = AP1), then after [19],
−2 ≤ a ≤ 2 which is unsatisfiable with the constraint a > 2.
Mendoza et al, as probably many biologists, will be tempted
to describe in the form of weights the relative strengths of
interactions between genes acting on different targets, because
it has sense in biological terms (a gene g1 can be much
more sensible to the action of the product of another one
g2, than another third gene g3 would be for the products
of a fourth one g4, and this because of different levels of
expression of genes g2 and g3, and because of the different
efficiencies of the promoters of g1 and g3). This is allowed
in Hopfield’s formalism only for interactions that concern the
same transition function; i.e. the same target gene. In other
situations, another, more adapted, formalism must be used.

D. Minimal models

Another point that must be mentioned is the notion of
minimal model. It is an evidence that weight or thresholds
of a Hopfield-like network can take all the possible signed
integer values. All the works written in articles or presented
in conferences on such networks do not take an interest in
this question of the values of interaction matrix or of the
thresholds. Because biologists try to inject in the most realistic
form (the closer form to biology) their knowledge in their
model, they use values of different importance that can be
compared between each others. For the reasons evoked in the
previous section, we know that it does not make sense most
of the time (every time it concerns comparisons between lines
in the interaction matrix). Moreover, even if the values are
carefully chosen to make sense (local comparisons only), they
can be reduced in such a way the transition functions has the
same functioning [19].

Two models are equivalent when they have the same transi-
tion function (behaviour). We call the parameters interval the
smallest interval I ⊂ Z such that all the parameters of the
model, i.e. weights and thresholds, belong to I . A model O,
having IO as the parameters interval, is called minimal when
there is no equivalent model M having IM as a parameters
interval and such that IM ⊂ IO and IM 6= IO. An example
is given in figure 3 to explain the notion of equivalence and
minimality.
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A non-minimal model M1

W =

 0 0 0
0 0 0
1 2 0

 θ =

 0
0
1


IM1 = [0, 2]

The corresponding minimal model M2

W =

 0 0 0
0 0 0
1 1 0

 θ =

 0
0
1


IM2 = [0, 1]

θ1

θ2

θ3

w31

w32

Fig. 3. Minimal AND function in Hopfield’s formalism. An AND function
can be represented by 3 neurons : the state of the nodes N1 and N2 (resp. N3)
represent the inputs (resp. the output). Models M1 and M2 are equivalent.
Their respective matrices of interaction and thresholds are given. Models M1

and M2 have the same transition function but M2 is minimal because there
is no other equivalent model having its parameters interval smaller than IM2 .

A transition function can be described by a unique model,
the minimal model. Without loss of generality one can say that
a minimal model defines a unique behaviour and reciprocally,
a behaviour corresponds to only one minimal model. Then,
when one finds a solution to a regulatory network, he must
ensure that it is a minimal model or reduce it so as to compare
it easily to other minimal models. Moreover it allows, as we
will see, to reduce drastically the size of the set of valid
instances of models.

III. DETERMINING THE REGULATORY NETWORK OF
Arabidopsis thaliana FLOWER MORPHOGENESIS

Using the constraint-based approach described above, we
looked for all the valid models of the Arabidopsis thaliana
flower morphogenesis regulatory network that are in adequacy
with the experimental knowledge on the structure and the
dynamics given in [1] (Fig. 4). We translated the structural
knowledge (relations between weights and values of thresh-
olds) and the dynamical knowledge (set of attractors describing
the differentiation behaviours of the flower) into a constraint
normal form. We also removed or modified (See Fig. 4) the
constraints that did not make sense (like the relation a > b >
l > 0 that causes unsatisfiable situations when confronted to
the intrinsic constraints of Hopfield’s formalism). Dynamical
constraints are such that the network, depending on initial
conditions converge all to at least 4 physiological tissues

(stationary points), sepals, petals, carpel and stamens, plus a
stationary point attractor called ’no flower’. More than 39
millions of models (not yet reduced) were compatible with
structural knowledge. After addition of the dynamical knowl-
edge, there were only 3360 non-minimal models. Finally,
among them, we found 532 minimal models (these results
will be presented in another article [11]). All converge to the
experimentally observed stationary points but some showed
other stationary points, some showed different cycles ... As
expected, Mendoza’s do not belong not in them because of
the presence in this model of unsatisfiable constraints.

Fig. 4. Hopfield-like regulatory network of the Arabidopsis thaliana
flower morphogenesis. (Top left) The scheme of the regulatory networks with
its 12 nodes, as modelled by Mendoza et al [1]. (Bottom left) A photograph
of some A. thaliana flowers. (Right) The list of structural and dynamical
constraints as given by [1]. We indicate highlighted in grey the structural
constraints we conserved in the minimal model. All dynamical constraints
were preserved. All the other relations bring into play weights of arcs targeting
different nodes, i.e. they are non-sense relations.

Beyond the absolute result concerning the models them-
selves, this clearly shows the non-uniqueness of models.
Biologist must not be too much confident in their reasoning
based on an accumulated knowledge and their intuitions. They
will be able to find only few models (perhaps one or two
different ones) without imagining the huge number of other
models that exist. The constraint-based approach allows to
reveals the range of the set of different models that do exactly
the same thing. The role of the biologist will then be to find
new constraints that will divide this set and reject progressively
the models until only one or few ones remain.

IV. LETS GO FARTHER : TAXONOMY, OPTIMALITY AND
ROBUSTNESS

Many different minimal models of A. thaliana flower mor-
phogenesis regulatory network exist (532). What can we do
with that ? Which model can we choose and on which criterion
? Are there groups of homogeneous models ? Do the size of
the basins of attraction makes sense in biology ?
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A first manner to apprehend the set of models is to look
at the correlation between the size of the basins of attractions
within the set of valid models as shown in Fig. 5. Here, and in
the following, we will only concentrate on the stationary points
corresponding to the 4 physiological tissues of the flower and
the ’no flower’ stationary point. One observes first that there
exists a strong correlation between these sizes, e.g. petals and
sepals are positively correlated (i.e. when the size of the basins
of attraction of sepal increases, that of petals increases too),
idem for carpel and stamen, but sepals or petals are negatively
correlated with carpel or stamen. If one consider these models
not anymore as different independent models but as variants of
an ideal model, this result makes sense. Stamen and carpel are
co-localized and have a common function (reproduction), and
that the same for petals and sepals that play a protective role
together (lets call them ’co-tissues’). If a variation (a mutation)
occurs in the network that changes the size of the basin of
attraction of one tissue of the co-tissues, then it makes sense
that the variation will have an effect on both tissues of a co-
tissue.

The other observation made on this graphic is the presence
of homogeneous groups of models.

Fig. 5. Correlations between the basins of attraction sizes.

The size of the basins of attraction of the different tissues
gives an idea of their robustness against fluctuations of the net-
work state. One could calculate the probabilities of transition
from a basin of attraction to another in the presence of noise.
The bigger the basins are, the more robust they are because
it is probable that the network state formed by change in the
state of one gene only gives another network state in the same
basin [5]–[8]. Then, the size of an basin of attraction is a good
criterion of robustness. We used a score based on the sizes of

the basins of attraction of the 5 tissues to classify the models
(or morphogenetic landscapes). In figure 6, two examples of
classification based on on a different calculus of the scores are
given. A work concerning a good manner to calculate such a
score would be welcome but the essential is to make appearing
the homogeneous groups the figure 5 showed. At the right of
figure 6, one can see a coarse grain classification of models
into 4 groups.

Fig. 6. Classification of valid models by scoring their robustness. (Bottom)
The score is displayed in a growing order. It is calculated (Left) as the sum
of the sizes of the 4 basin of attractions of petals, sepals, carpel and stamen,
minus that of the no flower attractor (score optimal value = 0), or (Right) as
the product of Gaussian functions centered on the ’optimal size’ of each of
the basin of attractions of the tissues, that of the no flower being centered
on 0 (score optimal value = 1). The optimal size is fixed here as the average
size of the 4 tissues taken together. (Top) Using the scores, one can classify
the models in a barplot graphic showing the cumulated size of the basin
of attractions. (Top right) Roughly, 4 distinct groups appear : (A) big sepal
basins of attraction, (B) big carpel basins of attraction, (C) big petal basins
of attraction, (D) all equally-distributed.

Using a principal component analysis in the space of models
(or morphogenetic landscapes), we confirm the observation of
figure 6. The principal components are linear combinations of
the 532 models. By projecting the models into the new spaces
formed by the principal components, we are able to separate
them into 4 homogeneous groups.

Many other methods of taxonomic classification are possible
like those using the Hamming distances between the states
belonging to the basins of attraction of each model. Far for
being a simple curiosity, providing a taxonomy of models
is a powerful tool for dividing the set of valid models in a
Constraint-based approach. If it exists, and if it has any sense
to compare reality to formal models, the model that represents
the real system belongs to one of these groups. Finding criteria
to separate these groups, criteria that can be translated in the
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form of constraints, is then a very efficient manner to find
useful constraints.

Fig. 7. Principal component analysis in the model space. A principal
component analysis is realized on the model space (covariance matrix is
532x532 size). Here, the principal components represent new models (or new
morphogenetic landscapes) that are combinations of 532 different models.
(Top left) Four principal components only (mostly 3) are significantly different
to 0. This means that reasonably 4 to 5 homogeneous groups of models can
be identified. (Others) Projections of morphogenetic landscapes (models) on
principal component (new morphogenetic landscapes or models) spaces.

The importance of ’less important’ attractors such as limit
cycles has not been discussed yet. We think that one cannot
ignore them anymore. They are network states that the system
can reach depending on initial conditions. Real systems are
always fluctuating and sometimes the state of a system can
jump from one attractor to another one. Of course it will be
easier if the source basin is smaller than the target basin. Such
source basin could be limit cycles or other fixed points having
small basins of attraction. They could correspond to stem
cells of different differentiation degrees, the differenciation
process occurring due to fluctuations of the network states
of these stem basins. A future study should integrate them as
a criterion for classifying the models and provide an analysis
of the differentiation landscape from the size of the basins.
The optimal size of the basins is to be determined from
biological experiments on the robustness of the development
of the different tissues under exogenous perturbations : if
the differentiation or the homeostasis of a tissue is robust to
perturbation, then its basin of attraction must be large.

V. SUMMARY AND PERSPECTIVES

Along the first part of this paper we illustrate the differ-
ent traps encountered when conceiving models of biological
regulatory networks. We introduced a new approach (the

constraint approach) very few considered in systems biology
but that having a great potential in the – logical – inference of
models from experimental knowledge. The entire knowledge is
considered from the beginning and have the same importance.
The notion of minimal model is also introduced to complete
our inference approach in Hopfield-like networks. These points
will be developed in two separate articles.

We are now interested in using this approach to detect
eventual incoherences in the experimental knowledge and
to infer new knowledge concerning the relation structure-
dynamics such as the association of recurrent motifs such as
positive or negative circuits having particular dynamics. We
indeed think that it is possible to identify limit cycles being
able to synchronize easily through the structural motifs they
produce. A limit cycle that easily synchronize is a limit cycle
that, after a perturbation, relaxes following a particular phase
whatever is its initial phase. The perturbation is elementary,
i.e. it only affects one component of the network. At the scale
of a population of networks, this results in a global synchrony
favouring a collective behaviour. We are also currently inte-
grating in the form of new constraints the possible update
modes of the network (parallel, sequential, bloc-parallel).

All these new developments will allow us imagining ’intelli-
gent’ laboratory books : the biologist will feed his laboratory
book in experimental knowledge such as a series of exper-
iments of activation or inhibition of genes and the observed
behaviours obtained for example from micro-array records. As
the records go along, the data will be automatically translated
in the form of constraints injected in a satisfiability solver
that will infer the set of valid models in agreement with the
experimental knowledge.
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