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Abstract. Cell-cell adhesion plays a critical role in the formation of tis-
sues and organs. Adhesion between endothelial cells is also involved in
the control of leukocyte migration across the endothelium of blood ves-
sels. The most important players in this process are probably identified
and the overall organization of the biochemical network can be drawn,
but knowledge about connectivity is still incomplete, and the numeri-
cal values of kinetic parameters are unknown. This calls for qualitative
modeling methods. Our aim in this paper is twofold: (i) to integrate in
a unified model the biochemical network and the genetic circuitry. For
this purpose we transform our system into a system of piecewise linear
differential equations and then use Thomas theory of discrete networks.
(ii) to show how constraints can be used to infer ranges of parameter
values from observations and, with the same model, perform qualitative
simulations.

1 Introduction - Modeling Objectives

With the development of high-throughtput projects the quantity of molecular
level data is exploding. It is now clear that biology is entering a new era in which
all these molecular components have to be assembled into a system in order to
reach new levels of understanding.

In general terms, our goal is to formalize ’verbal models’ or, stated differently,
build a formal model from a word description of a biological phenomenon. This
means in practice that the knowledge is incomplete, that most information is not
precise but qualitative, and that we may have to deal with several hypotheses. In
any case, we want to be able to exploit what we do have, even if it is qualitative
information. In such a state of partial knowledge we view modeling as a tool
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to formalize different competing hypotheses and explore their consequences; to
help in interpreting new data and use data to discriminate among competing
models; to infer parameters and to devise maximally informative experiments.
In short we look for rigorous methods to reason about models and data in the
context of incomplete knowledge on complex systems.

Our first goal is the integration of biochemical reactions and genetic reg-
ulatory interactions in a single unified framework. It is possible in the case
of genetic networks to describe the regulatory interactions by logical (or dis-
crete) equations [22] without explicit reference to Ordinary Differential Equa-
tions (ODEs). The situation is different in the case of biochemical or signal
transduction networks because the types of reaction are more diverse (phos-
phorylation, complexation, transport, etc.). So, although differential equations
are not well suited to this knowledge level, it is nevertheless useful to describe
the cellular process in term of differential equations (even with unknown pa-
rameters) and to transform them into a discrete model with the same logical
structure. The modeling process can be summarized as follows: graph of bio-
chemical reactions −→(1) detailed ODEs −→(2) simplified ODEs −→(3) PLDEs
−→(4) discrete equations/interaction graph. Step (1) is straightforward. It re-
lates two equivalent descriptions and can be automated [19]. Step (2) involves
biochemical approximations to obtain a system of lower dimensionality based on
sigmoids. In transformation (3) sigmoid functions are replaced by step functions.
At this stage the system often reduces to piecewise linear differential equations
(PLDEs). For step (4) R. Thomas and others [20, 21, 22, 13] have developped a
method to transform a special class of PLDE into discrete equations to perform
a qualitative analysis of the dynamics.

The second goal is to show that such a formal description of the biological
system at hand can be easily exploited via a Constraint Logic Programming
(CLP) implementation. The advantages of the CLP approach are (i) that the
implementation is expressed in a very similar way to the formal specification,
thus guarantying the correctness of the implementation, (ii) that many differ-
ent queries can be easily asked to this formal specification due to its logical
form. For example, queries equivalent to simulation as well as inference of model
parameters in a context of incomplete knowledge.

These principles are illustrated by the study of endothelial cell-cell adhesion.
This case makes clear that the chemical reaction graph should not be confused
with the interaction graph (as one might think from the study of genetic networks
alone). Once a discrete model is at hand, we focus on the inference of parameter
values satisfying some constraints about the existence of steady states and the
existence of paths corresponding to the junction repairing process.

The organization of the paper is the following: after a short introduction to
the biological phenomenon, we describe the pathway and its components. In the
section 3 the modeling choices and approximations are explained. This allows
us to transform the initial ODEs into a simpler PLDE system, with reduced
dimensionality. The form of this system is slightly different from the one usually
encountered in the field of genetic networks and we show how the theory of
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Snoussi and Thomas [20] can be extended to account for this kind of piecewise
linear system. We then perform an analysis following the lines of this theory. We
explain briefly how the model is implemented in the CLP language Prolog IV
[4] and give examples of queries.

2 Description of the Biological System

The phenomenon of cell-cell adhesion and its control by the cell is rather complex
and our knowledge about it is far from complete.

Blood vessels are lined with a monolayer of endothelial cells that form a
barrier between blood and underlying tissues. This monolayer, called the en-
dothelium, plays a central role in regulating the recruitment of leukocytes at
sites of injury or inflammation. It does this by detecting changes in both the
flow and chemical composition of blood, which triggers the expression and/or
release on the cell surface of a variety of mediators.

Junctions between endothelial cells (adherens junctions) rely on the inter-
action of Vascular Endothelium (VE) cadherin molecules that are specifically
expressed at these junctions [14, 15]. VE-cadherin is directly involved in the
maintenance of endothelium permeability [9, 12] and in the control of the traffic
of leukocytes from blood toward inflamed tissues [10]. Thus, following close con-
tact between leukocytes and endothelial cells, proteases previously stored within
leukocytes are transported at the cell surface and locally cleave VE-cadherin.
This results in the subsequent disruption of adherens junctions that open the
way for leukocyte migration. Once leukocytes have gone through, the integrity of
endothelium must be restored to avoid an excessive accumulation of leukocytes
within inflamed tissues.

This restoration process is the focus of our study. We are able to grow in
culture endothelial cells extracted from human umbilical cords. The cells grow
to confluence and reproduce an endothelium on a 2-dimensional plate. The mi-
gration of leukocytes through the tissue and subsequent destruction of adherens
junctions is simulated in the culture by anti-cadherin antibodies which desta-
bilize the junctional complexes. The biochemical structure of the system is in-
formally illustrated on Fig. 1. We give now a brief description of the different
components.

Adherens junctions in endothelial cells are constituted of VE-cadherin hex-
amers [16]. These VE-cadherins are membrane proteins with a cytoplasmic tail
and a multidomain extracellular part. An hypothesis is that three VE-cadherin
molecules from cell 1 and three from cell 2 self-assemble to form antiparallel
hexamers. These hexameric units are held together via intracellular partners of
VE-cadherin.

β-catenin is one of these intracellular partners. It binds to the cytoplasmic
part of VE-cadherin, and Fig. 1 displays its central role in adhesion. One hypoth-
esis is that the VE-cadherin oligomer assemble first and then β-catenin binds to
it. This is the hypothesis we incorporate in our model although this point is still
controversial. β-catenin links cadherins to the actin cytoskeleton and has thus
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Fig. 1. Schematic and informal representation of the endothelial cell-cell adhesion sys-
tem. This graph stresses the overall architecture of the system. Circles represent chem-
ical species and black ovals chemical reactions. φ represents a degradation process. The
molecules are distributed over three cellular locations: cytoplasm, nucleus and plasmic
membrane. The concentration variables (x, y, z, u, v and w) are defined by the triples
(concentration variables, chemical species label, verbal definition) as follows: (x, cat,
cytoplasmic unphosphorylated β-catenin), (y, cad, monomeric cadherin in the mem-
brane), (z, catnuc, β-catenin in the cell nucleus), (u, catcad3, complex of β-catenin with
the cadherin trimer), (v, lefcat, complex of Lef/Tcf and β-catenin), (w, lef, Lef/Tcf
transcription factor). Single-headed and double-headed arrows denote irreversible and
reversible reactions, respectively

a structural role in the cell, but it is also able to act as a signalling molecule.
Under certain conditions it can enter the nucleus where it complexes with mem-
bers of the Tcf family of transcription factors, controlling gene expression. It is
probable that this move to the nucleus is an active transport process (by oppo-
sition to passive diffusion) : a protein analogous to β-catenin, p120, is known to
bind to motor proteins and to move along microtubules toward the cell nucleus
(microtubules are molecular tubes made from a protein called tubulin). The real
mechanism is poorly characterized and we will consider below two different ways
of modeling it.

Cytoplasmic β-catenin is degraded by a complex called the proteasome. β-
catenin is first complexed to APC and Axin (a scaffold protein), phosphorylated
by two kinases acting in sequence (Ck1, Gsk3) and then released in the cy-
toplasm. The phosphorylated β-catenin is then tagged for destruction by the
protasome. The levels of proteins like Ck1 and Gsk3 are probably regulated
but there is currently no information available. We thus considered that these
proteins are maintained at fixed levels and consequently that proteasomal degra-
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dation can be considered as a separate module with a single input. If regulatory
interactions coupling proteins of this module to the system studied here are later
identified, our model will have to be embedded in a larger model.

3 Modeling Choices - Derivation of a Simplified
Differential System

We give here an outline of the derivation of simplified PLDEs from detailed
’chemical’ ODEs. Our purpose is to obtain a system which is plausible from the
biological point of view, knowing that other choices are possible in the current
state of knowledge on cellular adhesion.

Pseudo-steady State (PSS) Approximation. The PSS approximation is
the main approximation we are going to use. It is classically used in the derivation
of the Michaelis-Menten equation for enzymatic reactions (see for example [17]
for a detailed presentation) and of the equation for regulatory interactions. It is in
fact potentially usable in cases where the first step is a reversible complexation-
decomplexation reaction.

The classical mechanism of the Michaelis-Menten kinetics is:

S + E �k1
k−1

S : E →k2 P + E

where S is the substrate (concentration s), E the enzyme (concentration e),
S:E the transient complex (concentration c) and P the product (concentration
p). The parameters k1, k−1 and k2 are the kinetic constants. The substrate
binds reversibly (double arrow) to the enzyme E. When the substrate is bound,
reaction occurs, product P is released and enzyme E is ready for a new event.
This mechanism is represented by a system of four differential equations (one
for each chemical species). The rate of variation of the concentration c is given
by: ċ = k1.s.e − k−1.c − k2.c .

In most biological situations the concentration of substrate is much larger
than that of enzyme. There is a short transient time during which c increases
very fast and then reaches a steady level (ċ = 0). This is the pseuso-steady state
(PSS) hypothesis. In a closed system, substrate concentration decays slowly as
reaction proceeds, and product concentration rises accordingly.

From ċ = 0 one gets the algebraic equation (k−1+k2).c = k1.s.e in which
time does not appear explicitly, only implicitly through variables s and e. When
using the PSS hypothesis we neglect the transient phase and assume that the
concentrations adjust instantly to the steady-state values after a perturbation.
In other words the characteristic time of the transient phase is supposed to be
short with respect to the kinetics of the perturbation.

The total quantity of enzyme is conserved: e0 = e + c . From this and the
above relation we get: c = f(s) = e0.s

K+s with K = k−1+k2
k1

.

The function f(s) for s ≥ 0 is a hyperbola branch. When cooperative binding
occurs as in the case of allosteric enzymes (enzymes made of several sub-units
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and thus several binding sites), the function f has sigmoid shape. The rate of
production of P is: ṗ = k2.c = k2.f(s) .

The parallel with a regulatory interaction is readily seen: regulatory protein
R (the analog of substrate S) binds reversibly to promoter Pr (DNA sequence);
When R is bound to Pr, gene transcription occurs. The kinetic constant kp
associated to this process represents the average number of ’polymerase start’
events per time unit. The previous reasoning applies, with the difference that
nothing is consumed here. This is in fact a particular case in which k2 = 0 and
thus the system is in quasi-equilibrium at all times. The rate of production by the
regulated gene is then: ṗ = kp.occPr = kp.fp(r) where r is the concentration
of R and occPr the promoter occupancy. Since regulatory proteins are often
dimers, binding to the promoter is cooperative and function fp has sigmoid
shape in most cases. In this treatment concentration fluctuations are assumed
to be negligible (no stochastic effects). We apply the PSS approximation in two
instances below.

Reactions Taking Place in the Cell Nucleus. The rates of variation of the
nuclear species (see Fig. 1) are given informally by:

ż = [transport] + [decomplexation lefcat] − [complexation lef & catnuc]
−[z degradation]

v̇ = [complexation lef & catnuc] − [decomplexation lefcat]
ẇ = [decomplexation lefcat] − [complexation lef & catnuc]

The lefcat complex activates several genes among which the β-catenin and
cadherin genes [9]. This is a typical situation where the PSS approximation can
be used. First at the usual step of binding to DNA (binding of the lefcat complex
to the regulatory site) and also at the step of complexation of lef and catnuc:
v̇ = −ẇ ≈ 0 . The analysis made above can be reproduced with protein Lef/Tcf
in the role of E and nuclear β-catenin in the role of S:

v = fv(z) =
w0.z

Kv + z
(1)

where w0 is the total quantity of Lef/Tcf in the nucleus, and Kv is the Michaelis-
Menten constant of the enzyme.

The transport and degradation terms are given by:
[transport] = kt.ft(x), [z degradation] = mz.z

Reactions Taking Place in the Cytoplasm and Within or Near the
Plasmic Membrane. Trimerization of cadherin and complexation of the trimer
with β-catenin: we assume that these reactions are at quasi-equilibium (they are
fast with respect to synthesis, degradation, transport, etc...). Consequently the
global reaction cat + 3.cad � catcad3 gives the relation: u = Kc.x.y3, where Kc
is the equilibrium constant.

Binding of β-catenin to cadherin may be cooperative, in which case the rela-
tion is different. This does not matter in our context, the important thing being
that we have an algebraic relation g(x, y, u) = 0.
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The remaining equations are:

ẋ = [x synthesis] − [transport] − [x proteasomal degradation]
ẏ = [y synthesis] − [y degradation]

The bracketed terms are given by: [x synthesis] = kx0 + kxs.σ
+(v, sv)

[x proteasomal degradation] = (mx1 + mx2.σ
+(x, sx2)).x

[y synthesis] = ky0 + kys.σ
+(v, sv)

[y degradation] = my.y

where σ+(a, sa) is a positive sigmoid with an inflection point at sa.

Proteasomal degradation differs from spontaneous degradation by the exis-
tence of two levels (mx1 and mx1 +mx2). Note also that we include a basal level
of expression of the β-catenin and cadherin genes (kx0 and ky0).

All occurences of v are replaced by fv(z) (Eq. 1). The [x synthesis] term can
be rewritten as follows:
[x synthesis] = kx0 + kxs.σ

+(fv(z), sv). Under the condition that the threshold
on lefcat is less than the lefcat saturation value, the composition of the hyper-
bola branch with a sigmoid gives a slightly deformed sigmoid (with parameters
different from those of the original sigmoid): [x synthesis] = kx0 + kx1.σ

+(z, sz1)
where kx1 is a new constant defined from kxs and the hyperbola parameters.

We are left with the following system :
⎧⎪⎪⎨
⎪⎪⎩

ẋ = kx0 + kx1.σ
+(z, sz1) − kt.ft(x) − (mx1 + mx2.σ

+(x, sx2)).x
ẏ = ky0 + ky1.σ

+(z, sz2) − my.y
ż = kt.ft(x) − mz.z
g(x, y, u) = 0

Note that y does not influence other variables, and can be integrated once
z(t) is known. Thus we can work on the sub-system constituted by the two
differential equations on x and z. From a given solution (x(t), z(t)), y and u can
be calculated.

We consider two ways of qualitatively representing transport, called ’sig-
moidal’ and ’linear’ for short:

– Linear transport: ft(x) = x
– Sigmoidal transport : ft(x) = σ+(x, sx1)

In this last case the system we obtain is close to the classical form used in
the field of genetic regulatory networks:

ẋj = h(x1, . . . , xi, . . .) − mj .xj (2)

where h is a sum of products of (positive or negative) step functions depending
on several variables xi (possibly including xj itself).

The noticeable differences between these equations and ours are twofold: (i)
the coefficient in the x degradation term is not a constant but contains a step
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function, (ii) the complete system includes an algebraic equation. The three
differential equations can be solved independently of the 4th equation since they
do not involve u.

The version with a linear transport term introduces a third difference: the
differential system is not diagonal any more since ż involves z and x.

4 Discrete Models and Thomas-Snoussi Theory

L. Glass [7, 8], R. Thomas [22] and others have developped a logical description
for genetic regulatory networks. It allows to analyse qualitatively the dynamics
of such networks. As said above the logical equations are derived from PLDEs
of the form (Eq. 2). The variables xi can be viewed as the concentrations of the
proteins produced by the genes. A state x of the system is defined by a vector
(x1, . . . , xj , . . . ) and a path is a sequence of states.

In the asynchronous description a focal point X is associated to each state x:
X = f(x) . The state X is the state toward which the system tends. If only one
variable differs between X and x, this variable changes value in the transition
t → t + 1 and state X is reached at the next step. If n variables differ between
X and x, n transitions are considered because by definition only one variable
can change value in a transition. In such a description the system evolution is
non-deterministic.

When logical equations are viewed as abstractions of PLDEs, it is easily
seen that the probability for two or more variables to switch synchronously
is marginal. The state space (concentration space) is divided into rectangular
domains by the thresholds existing along each axis xi: in each domain Dk the
DE system is linear, and a focal point Fk can be associated to Dk: Fk = φ(Dk).
Another important aspect is that the kinetic parameters are poorly known or
totally unknown. Snoussi, Thomas and colleagues [20, 21, 22] have developped a
method in which these parameters are discretized on the scale defined by the
thresholds. This means that the location of the focal points is not precisely
known. What is known is, for each domain Dk, which domain Df the focal
point Fk belongs to. From this mapping, the transitions between domains can
be established and the transition graph built.

As mentioned at the end of section 3, the differential equations we obtain
do not have exactly the form of those used to describe genetic networks. We
have shown (to be published) that PLDEs with piecewise linear degradation
terms can be transformed to the form used by Thomas and colleagues. It is
thus possible to represent the logical structure of the system by an equivalent
interaction graph and perform an analysis in term of circuits [20, 21, 22]. It is also
in principle possible to extend the theory to PLDEs with off-diagonal terms, but
the transformation becomes complicated, and implies the introduction of many
discrete Ka,i parameters (see next section for the definition). In the following,
we present only the discrete equations obtained on our specific case.
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5 Model Implementation in Constraint Logical
Programming

CLP is a programming technique based on a declarative approach. A program
is constituted of a set of predicates stating what is known to hold true on the
system.

The construction of a program proceeds in two steps:

1. Statement of a logical specification. In our case this step corresponds to the
statement of predicates defining the formalism used (asynchronous networks
with discrete parameters) and those defining the model itself. The model is
represented a set of constraints corresponding to the discrete equations.

2. Statement of queries. Some of the parameters involved in the queries can be
constrained while others are left unconstrained. In our context the parame-
ters are typically the discretized kinetic parameters and sequences of states
of the biological system. Examples are shown below.

In the case of a query with known kinetic parameters and unknown sequence
of states the program returns the paths compatible with the parameters. This
corresponds to a qualitative simulation. In the case of a query with known se-
quence of states and unknown parameters, the program returns the parameters
compatible with the paths, or in other words an inference on the kinetic param-
eters (reverse-engineering). Mixed requests can also be formulated when part of
paths have been observed and parameters are partially characterized. The re-
versibility property is one of the most powerful and interesting in this context.
The same model description can be used for simulation, inference and mixed
requests. Finally, constraints allow an efficient representation of sets of models.
It is the addition of new constraints which allows to reduce the set of possible
models.

5.1 The Two Models

The real parameters used in the models are the following:

Kx,0 = kx0
mx1

Kx,3 = kx0
mx1+mx2

Kx,6 = kx0
mx1+kt

Kx,9 = kx0
mx1+mx2+kt

Kx,1 = kx1
mx1

Kx,4 = kx1
mx1+mx2

Kx,7 = kx1
mx1+kt

Kx,10 = kx1
mx1+mx2+kt

Kx,2 = kt
mx1

Kx,5 = kt
mx1+mx2

Kx,8 = kt
mx1+kt

Kx,11 = kt
mx1+mx2+kt

Kz = kt
mz

At this point, we make an additional approximation by replacing sigmoids
(σ) by step functions (s).

Model A : Model with Linear Transport. From the PLDEs it is possible
to derive the following equations:
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X = s−(x, sx2).[Kx,6 + Kx,7.s
+(z, sz1)] + s+(x, sx2).[Kx,9 + Kx,10.s

+(z, sz1)]
Z = Kz.X

giving the coordinates (X,Z) of the focal point associated to the point (x,z).

Now, following Thomas [22], we define discretization operators. If for ex-
ample, a real variable a has two thresholds (sSup, sInf with sSup > sInf) it is
abstracted in a discrete variable a = d(a) as follows:

a = 0 ⇔ a < sInf
a = 1 ⇔ sInf < a < sSup
a = 2 ⇔ sSup < a

We introduce the following discrete variables:

X = dx(X), Z = dz(Z), x = dx(x), z = dz(z).

There are three thresholds in this model: sx2, sz1, sz2 and consequently two
threshold orders have to be examined: sz1 < sz2 (model A1) and sz2 < sz1
(model A2). The parameterized discrete models A1 and A2 are defined in Table
1. Note that, even though sz2 does not appear in these two equations, it must
be taken into account because y depends on this threshold.

Table 1. Tables for models A1 and A2

x z X Z X Z
0 0 Kx,6 Kz,6 Kx,6 Kz,6

0 1 Kx,6+7 Kz,6+7 Kx,6 Kz,6

0 2 Kx,6+7 Kz,6+7 Kx,6+7 Kz,6+7

1 0 Kx,9 Kz,9 Kx,9 Kz,9

1 1 Kx,9+10 Kz,9+10 Kx,9 Kz,9

1 2 Kx,9+10 Kz,9+10 Kx,9+10 Kz,9+10

There are eight discrete parameters Kx,i and Kz,i for these two models. These
parameters Ka,i are defined as follows: Ka,i = da(Ka,i), Ka,i+j = dx(Ka,i +
Ka,j). From this definition one can deduce the constraints: Kx,6 ≤ Kx,6+7,
Kx,9 ≤ Kx,6, Kx,9+10 ≤ Kx,6+7, Kx,9 ≤ Kx,9+10, Kz,6 ≤ Kz,6+7, Kz,9 ≤ Kz,6,
Kz,9+10 ≤ Kz,6+7, Kz,9 ≤ Kz,9+10.

Due to the above inequalities, if Kz,6+7 < 2 then Kz,6 < 2, Kz,9 < 2 and
Kz,9+10 < 2. This means that Z cannot be equal to 2 (see Table 1) and thus
no state with z = 2 is reachable. We make the biological hypothesis that our
system can reach states in which both β-catenin and cadherin are produced,
which means that z is above both sz1 and sz2 (z = 2), so that we have necessarily
Kz,6+7 = 2. For each case (A1, A2), 84 parameter sets are compatible with the
above constraints.
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Model B : Model with Sigmoidal Transport. From the PLDEs it is pos-
sible to derive the following equations:
X = s−(x, sx2).[(Kx,0 − Kx,2) + Kx,1.s

+(z, sz1) + Kx,2.s
−(x, sx1)]

+s+(x, sx2).[(Kx,3 − Kx,5) + Kx,4.s
+(z, sz1) + Kx,5.s

−(x, sx1)]
Z = Kz.s

+(x, sx1)

There are four thresholds in this model: sx1,sx2, sz1, sz2 and consequently
four pairs of threshold orders have to be examined: sx1 < sx2 and sz1 < sz2
(model B1), sx1 < sx2 and sz2 < sz1 (model B2), sx2 < sx1 and sz1 < sz2 (model
B3), sx2 < sx1 and sz2 < sz1 (model B4). The parameterized discrete models
B1, B2, B3 and B4 are defined in Table 2.

Table 2. Tables for models B1, B2, B3 and B4

x z X Z X Z X Z X Z
0 0 Kx,0 0 Kx,0 0 Kx,0 0 Kx,0 0
0 1 Kx,0+1 0 Kx,0 0 Kx,0+1 0 Kx,0 0
0 2 Kx,0+1 0 Kx,0+1 0 Kx,0+1 0 Kx,0+1 0
1 0 Kx,0−2 Kz Kx,0−2 Kz Kx,3 0 Kx,3 0
1 1 Kx,0+1−2 Kz Kx,0−2 Kz Kx,3+4 0 Kx,3 0
1 2 Kx,0+1−2 Kz Kx,0+1−2 Kz Kx,3+4 0 Kx,3+4 0
2 0 Kx,3−5 Kz Kx,3−5 Kz Kx,3−5 Kz Kx,3−5 Kz

2 1 Kx,3+4−5 Kz Kx,3−5 Kz Kx,3+4−5 Kz Kx,3−5 Kz

2 2 Kx,3+4−5 Kz Kx,3+4−5 Kz Kx,3+4−5 Kz Kx,3+4−5 Kz

There are nine discrete parameters Kx,i and Kz for these four models, which
are constrained by their definitions: Kx,0−2 ≤ Kx,0, Kx,0 ≤ Kx,0+1, Kx,0−2 ≤
Kx,0+1−2, Kx,0+1−2 ≤ Kx,0+1, Kx,3−5 ≤ Kx,3, Kx,3 ≤ Kx,3+4, Kx,3−5 ≤
Kx,3+4−5, Kx,3+4−5 ≤ Kx,3+4, Kx,3 ≤ Kx,0, Kx,3+4 ≤ Kx,0+1, Kx,3−5 ≤
Kx,0−2, Kx,3+4−5 ≤ Kx,0+1−2, Kz = 2. The last constraint is due to the bio-
logical hypothesis, as stated above.

5.2 Organization of the CLP Program

Now a few words about the overall organization of the CLP program. A gen-
eral predicate defines the asynchronous multivalued framework. The predicate
multivalued async model(Model, Path) is true if Path is a possible path of
the model Model. A path is a list of states. A model is defined by the type of
transport and the threshold order. It is represented by a transition table (see
Tables 1 and 2) and a set of constraints between the model parameters which
are deduced from the definition of the model. A general constraint defined in
multivalued async model is for example that a variable value changes by unit
steps in a transition (it cannot jump from 0 to 2 or from 2 to 0).

Due to the fact that we obtain discrete equations from the PLDEs, it is pos-
sible to use the constraint solver on intervals of Prolog IV. In our case, variables
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have finite domains. As an example, consider a case where a model Model is
known, defined by a table T and parameters P. Then a typical query concerning
the existence of steady states is the following:

Path = [S,S] ,
Model = [T,P] ,
multivalued_async_model(Model,Path) .

5.3 Example of Queries and Results

Questions about Steady States. In the case of sigmoidal transport (four
models: B1, B2, B3, B4), we ask the list of all possible steady states (whatever the
threshold orders). We find four states: (0, 0), (1, 0), (1, 2), (2, 2). An additional
query allows to see that there exists no set {Ka,i} having more than two steady
states. We obtain the same result, i.e. no more than two stable states, in the
case of linear transport (two models: A1 and A2).

The next query is: What are the sets of Ka,i values having just two steady
states? For model B3 for instance, there are five solutions: one having steady
states (0,0) and (2,2) and four having (1,0) and (2,2). In the case {(0,0),(2,2)},
we interpret state (0,0) as the normal state in which β-catenin is present in the
cytoplasm and in the nucleus at low levels. In all cases, (2,2) is a pathological
state of constant over-expression.

Question About the Perturbation. From this point, one would like to know
in case B with the two steady states (0,0) and (2,2) whether it is possible to take
into account the repairing of the junctions. More precisely, when junctions are
destabilized by antibodies, cadherins are destroyed and β-catenins are released
in the cytoplasm. In our modeling the perturbation is represented by setting
the system in a state with larger values of x. It implies that (2,2) cannot be
considered as a normal state of the cell (because x cannot be augmented). The
resulting query checks that it exists a path beginning in state (1,0) and containing
a state where z = 1 (the nuclear β-catenin concentration is observed increasing
[9]) which finishes in state (0,0) (the normal steady state is reached). It appears
that only model B2 is acceptable.

Also, one would like to know the parameter sets in case B for a unique steady
state (excluding (2,2)), which takes into account the repairing of junctions. The
resulting query checks that it exists a path beginning with the perturbed state
and containing a state where z has been increased which finishes in the steady
state. Model B3 admits 29 parameter sets having exactly one steady state. The
added constraint on the existence of a restoration path eliminates 14 sets.

6 Conclusion and Perspectives

Using the PSS approximation we have been able to represent our biochemical
system by PLDEs very similar to the ones used for genetic networks. This allowed
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us to describe in a unified way regulatory interactions and biochemical reactions.
This kind of analysis is not general and must be performed on each specific case.

Then, using an exploratory strategy and refining progressively the queries,
we were able to deduce interesting properties having biological interpretation.
We focused on stable states and models exhibiting ’return to stable state’ paths
and it appeared that such constraints reduce notably the number of possible
parameter sets. We were not interested in oscillating behaviors, but it is course
possible to express constraint-based queries about cylic paths.

Related Work. Constraint Satisfaction Problem (CSP) technology is used by
V. Devloo [6] to discover efficiently the steady-state of completely instantiated
asynchronous models. It is mentionned also that this approach could be used, as
we do in this paper, to induce parameters from system behaviors.

Chabrier and Fages [2] describe a model-checking approach in CLP [5] (with
linear arithmetic constraints) to check properties of qualitative or quantitative
systems expressed in Computation Tree Logic (CTL): this study considers that
the biological system is known.

Peres and Comet [18] pursue a similar goal as ours (inference of a Thomas
network) by using model-checking and CTL, but without using constraints. They
generate 27 model instances and check the validity of a CTL formula on each of
them. This allow them to reduce to 14 possibilities. An approach similar to ours
was advocated by J. Cohen for the case of gene regulatory networks [3].

Bockmayr and Courtois [1] use HCC (Hybrid Concurrent Constraint) which
can tackle more general differential equations. But this technology does not ap-
pear to possess the full capabilities of constraints, namely to infer pre-conditions
from post-conditions. For the purpose of taking into account more general dif-
ferential equations. We are thinking to rather use an approach similar to the one
proposed by Hickey [11].

It is worth noting that the CLP technology as used in this paper, provide not
only constraint solvers (in particular CSP solvers) but also a very flexible and
powerful way to express queries via logical formulas. The queries mentioned in
section 5 are typical of this aspect as each of them introduce new constraints to
be added to the constraints defined by the predicate multivalued async model.

Perspectives. DNA chip experiments as well as proteomic experiments are
being done in our lab to identify new players (genes and proteins). This will
extend the molecular network but will also bring new data and thus new con-
straints. Other biological hypotheses should be included concerning for example
the adherens junction assembly process. Taking into account combinations of
such hypotheses, we will generate a ’model space’. It will then be even more
important to have formal reasoning tools to discriminate these models.

Also we intend to study carefully the language of the interesting queries which
can be answered efficiently. The present network is tractable, but it could be a
different matter as complexity increases.
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