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abstract

Computer tools are needed in systems biology to analyse qualitatively the dynamics of Gene Reg-
ulatory Networks (GRNs). Particularly, biologists are interested in infering these networks from
observed behaviours. In this paper we present a Boolean satisfiability (SAT) approach applied
on a widely used asynchronous logical description of such networks. After a brief presentation
of the asynchronous logical formalism, we explain how we express into constraints the evolution
rule of GRNs. Then, we show how to translate efficiently these constraints into Boolean formulae.
We finally report results about infering parameters of a biological model of the λ-phage immunity
control. Our study shows that SAT solving is a powerful tool for analysing GRNs and related
transition systems found in biological applications.

1 Introduction

The comprehension of a cellular system can pass by the modeling of a Gene Regulatory Network
(GRN). For this purpose, it is necessary to look for the main players (genes) and the existence
of interactions between them. Most often the knowledge of these interactions in terms of kinetic
data, composition functions of several interactions or activation threshold values of an interaction
remains incomplete.

In order to solve this problem, we propose a formal tool to help the reasoning which lean on
a constraint technology, the Boolean satisfiability (SAT). This technology permits to describe a
problem in terms of mathematical relations (the constraints) on a set of variables. It induces a
declarative approach which permits to model a network and the rules which govern its dynamic
without fixing the variables of the problem and finally to perform a mix of simulation and inference
according to some biological observations or assumptions. It allows to gain knowledge on a GRN
by solving the related combinatorial problem.

To be specific, we use a well accepted formalism in the domain of Gene Regulatory Network
(GRN) analysis: the asynchronous logical description by R. Thomas [9]. We having described
how to formalize and analyse these networks with constraint programming (CP) [5, 3], we propose
a SAT representation for this problem to improve significantly the performances by using a SAT
solver [4].

This paper is organized as follows. First, the problem is expressed and the asynchronous logical
description is presented. Then, the design and the main ideas of the SAT model are presented.
Results and some comparative evaluation follows. Finally, conclusions and plans for future work
are laid out.

2 The problem

The problem can be expressed as follows: Is there a model composed of identified genes and
interactions which is coherent with some observed qualitative behaviours and hypotheses ? If
yes, what are the properties (about behaviours, kinetics of reactions) of the models which are
compatible with the behaviours and hyptohesese?

To be more precise we define in the following the GRNs and the asynchronous logical descrip-
tion.



2.1 Gene Regulatory Network

To introduce the notion of Gene Regulatory Network, and we use for illustration purposes a par-
ticular biological process, the λ-phage immunity control [8], whose GRN we now call λGRN for
short.

A GRN abstracts the interactions between several genes of a cell. An interaction can be an
activation or an emphinhibition. For instance, in the λGRN, the gene cI inhibits gene cII : it means
that it has been observed at least one case where the quantity of proteins cI being low (under a
certain threshold), the concentration of proteins cII has tended to increase, while it has not been
observed if cI is high (above this threshold).

In many biological interactions the influence of one gene upon another can be thought of as
a sigmoid function: there is a threshold in the concentration of the protein at which the effect on
the production of the target protein changes steeply from efficient to inefficient. So, sigmoids are
often approximated by step functions.

The interactions between the genes are traditionally represented by an interaction graph: see
Fig. 1 for the interaction graph of our λGRN example. In this graph the nodes represent the
genes and the arrows from a node a to a node b model the fact that the concentration of a affects
the concentration of b. Each arrow carries two annotations: a sign denoting the nature of the
interaction: + for activation, − for inhibition; an index for the threshold at which the interaction
changes its activity status.

The thresholds, noted tjc (where j is the index of the threshold and c is the component), at
which these changes occur may have not precise numerical value, but we can sometimes determine
experimentally the order between these thresholds. For instance, for the species CI, t1cI is the
threshold for the interaction on N, t2cI is the threshold for the three interactions on cI (itself), cro
and cII (cf. Fif. 1) and the order between these two threshold is the following: t1cI < t2cI .
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Figure 1: Interaction graph for the λ GRN.

2.2 Asynchronous logical description

We present the asynchronous logical description, created by the biologist R. Thomas [9], which
relates the interaction graph of a GRN and its dynamic behaviours. The main goal of this formalism
is to obtain a qualitative understanding of the network dynamics by reasoning on discrete entities.

It can be described as follows:

1. The model is purely discrete:

• The concentration of each protein a is modeled by a discrete variable, noted Xa. If
there are i thresholds of interest for the concentration of a, then Xa will range over



[0, i]1. For the λGRN, we obtain 3, 4, 2 and 2 discrete values for the concentrations of
cI, cro, cII and N, respectively.

• A discrete concentration state X , or just state, of the system is represented by a vector
of discrete values for each of its genes. For instance a possible state X of the λGRN
is X = 〈XcI = 0, Xcro = 1, XcII = 0, XN = 0〉, or X = 〈0, 1, 0, 0〉 for short. This
state is interpreted as follows: the concentration of genes cI, cII and N are all below
their lowest threshold, while the concentration of cro is between its first and second
thresholds. In the λGRN we have 48 different states.

2. The transition rule defines for a particular state which are its successors. The transition rule
is based upon the following notions:

(a) Tendency: in a given state, the system can be thought of as tending to evolve towards a
new state, called focal state. The complex mix of influences between the genes of the
system is therefore reduced to abstractions of the form "in state 〈0, 1, 0, 0〉, the system
tends to evolve towards the focal state 〈2, 0, 0, 0〉". The focal state of a state X is noted
FX and the value of each of its components c is denoted Fc,X .

(b) Asynchronicity: in a given transition, the system is not supposed to cross two or more
thresholds simultaneously.

Then, the transition rule can be expressed as follows:

• If the system’s current state X is different from its focal state FX , then the concentration
of one of its components c will change, by one unit, and in the direction indicated by
Fc,X . This is done independently for each component so that a state X can have several
successors We thus obtain a non-deterministic transition system.

• If the system current state is equal to its focal state, the system is said to be in a steady
state and no concentration changes.

For instance if the state 〈0, 1, 0, 0〉 has 〈2, 0, 0, 0〉 as focal state, then its successors are either
〈1, 1, 0, 0〉 (move along the first dimension towards value 2) or 〈0, 0, 0, 0〉 (second dimension,
towards value 0).

3. This leaves the question of how each component Fc,X of the focal state of a state X is defined.
This definition is by case: component c is influenced by a number of other components. For
instance the gene cro is influenced by cI and cro (itself); depending on the current discrete
values of XcI and Xcro, the tendency Fcro,X can take different values. As in the λGRN
t1cI < t2cI and t1cro < t2cro < t3cro (that gives the value 2 and 3 for the discrete thresholds t2cI
and t3cro, respectively). We obtain 4 possible cases for Fcro,X :

Fcro,X =


P 1

cro if XcI ≥ 2 ∧ Xcro ≥ 3
P 2

cro if XcI ≥ 2 ∧ Xcro < 3
P 3

cro if XcI < 2 ∧ Xcro ≥ 3
P 4

cro if XcI < 2 ∧ Xcro < 3

(1)

The parameters P j
c (where j is the term number and c is the component) are called discrete

kinetic parameters (they characterize the kinetics of the system). These parameters are in
general not known.There are, however, constraints on these parameters that are imposed by
the interaction graph. For instance, because the observation of the negative interaction of cI
on cro, we add the following observability constraint: P 1

cro < P 3
cro ∨ P 2

cro < P 4
cro. We add

1Note that this model implies that two thresholds with different labels also have different numerical values.



also additivity constraints which define the composition function of several interactions on
a same gene like a sum. For instance, for the two interactions influencing cro, we add the
following constraint: P 1

cro ≤ P 2
cro ∧ P 1

cro ≤ P 3
cro ∧ P 2

cro ≤ P 4
cro ∧ P 3

cro ≤ P 4
cro. Note that

we could left undefined this composition function or define it in another manner.

Note that this transition rule (tendency and asynchronicity) permits to represent in intension a
transition system by the use of the concept of focal state.

3 Encoding the problem of analysing GRN in Conjunctive Normal Form (CNF)

First, we give a general explanation of the SAT problem and the interst of this representation in
our context. Then, we present a formal definition of a model in terms of few formulae using
multivalued variables and numerical/Boolean constraints. Finally, we describe the translation of
this definition into CNF.

3.1 SAT problem and SAT solvers

The SAT problem consists in finding a valuation of a set of Boolean variables (a binding of the
Boolean variables to values) which renders true a CNF formula. A CNF formula is a conjunction
of clauses, where each clause is a disjunction of literals which represent a Boolean variable or
its negation. A CNF formula is said to be satisfiable if it accepts an assignment (valuation of the
variables) which renders it true, otherwise it is said to be unsatisfiable.

The SAT solvers are optimized to find quickly a solution to a formula in the very specific format
of conjunction of clauses. These solvers offer a very efficient manner to solve a lot of combinatorial
problems, even with hundred of thousands of variables. The efficiency of SAT solvers is the result
of a well adapted representation of CNF formula, a subtle equilibrium between deductions and
“enumerations” (attribution of values to well-chosen variables), and the use of a backtrack search
with some adaptive heuristics [1].

The key issue to apply SAT is to find an efficient CNF encoding of the problem to solve. In
our case, the first difficulty is the need to use only Boolean variables to obtain a CNF. That mean
that we will have to translate each multi-valued variable into a collection of Boolean variables. A
second difficulty arises because of the number and the size of clauses to be generated (cf. section
3.3).

3.2 Description of a model

The description of the model is lead by the modeling of the transition rule. We must express the
formal relation between a state and its successor states, by using intermediate variables relative to
the focal state and the term conditions appearing in the focal equation (e.g. XcI ≥ 2 ∧ Xcro ≥ 3
in equation (1)). For the sake of clarity, we first express this relation using a high-level description
in terms of multi-valued variables and arbitrary numerical/Boolean constraints (section 3.3 will
explain how this is mapped into a Boolean encoding).

3.2.1 Relation between a state and term conditions in focal equations.

The first step is to create intermediate Booleans variables, noted Bi,X , defining the truth value of
each elementary condition in focal equations for a state X and an interaction i. An elementary
condition is associated to a single interaction (arrow in the interaction graph, like in figure 1)
and reflects the “activity” or the “inactivity” of this interaction. Formally a single interaction i is
described by a tuple of four entities: an effector given by effector(i), a target gene given by target(i),
a sign given by sign(i), a discrete threshold given by threshold(i). For example, the interaction in



λGRN from cI to cro (cf. figure 1) is identified by (cI, cro,−, 2). Then, the notion of “activity”
Bi,X is defined by:

Bi,X =

{
(Xeffector(i) ≥ threshold(i)) if sign(i) = +
(Xeffector(i) < threshold(i)) if sign(i) = −

Now, it becomes easy to define formally the term condition noted Cj
c,X , for each term j of

each component c for the state X . The variables Cj
c,X depend only of the variables Bi,X such

that target(i) = c. More precisely, Cj
c,X is a conjunction of such Bi,X or negation of such Bi,X .

For example, for the equation (1), given a state X , we have C3
cro,X = Bi1,X ∧ ¬Bi2,X with

i1 = (cI, cro,−, 2) and i2 = (cro, cro,−, 3). Note that, by construction of the focal equations,
for a given state X and a component c, we have exactly one Cj

c,X true.

3.2.2 Relation between term conditions, parameters and focal components.

The second step of the modeling is to define the relation between term condition Cj
c,X , parameters

P j
c and focal components Fc,X for a current state X , as follows:

∀c, ∀j, Cj
c,X → Fc,X = P j

c

Example: For a state X with XcI = 2 and Xcro = 1, we obtain C2
cro,X = true and so by implication

that Fcro,X = P 2
cro (cf. 2.2 to see the definition of Fcro,X). For another state X , we can obtain also

deduction from the fact that the domains of Fcro,X and P 2
cro have no shared values, because this

property imply that XcI < 2 or Xcro = 3.

3.2.3 Relation between a current state, its focal state and its successor states.

The third step is to define the possible successor states of a current state. We introduce the (mul-
tivalued) variable Sc which is the value of the component c of the possible successor state S of a
state X , the Boolean variable Bst true if X is steady, the Boolean variable Bstc corresponding to
the steadiness of Xc, and the Boolean variables Bdownc and Bupc corresponding to a decrease
and an increase of the value of Xc, respectively. With these variables Sc is defined by:

∀c, Xc − 1 ≤ Sc ≤ Xc + 1 Sc adjacent to Xc

∀c, Bdownc ↔ Sc = Xc − 1 defines Bdownc

∀c, Bupc ↔ Sc = Xc + 1 defines Bupc

∀c, Bdownc → Xc > Fc tendency to go down
∀c, Bupc → Xc < Fc tendency to go up
∀c, Bstc ↔ Fc = Xc stationary tendency
Bst ↔

∧
c Bstc stationary tendency

exactly_one(<list of Bdownc, Bupc and Bst >) asynchronicity

The last constraint is the link between all the previous constraints; it enforces that exactly one
Boolean variable is true among the Bdownc variables, the Bupc variables and Bst.

A rapid examination shows that the number of the Booleans necessary for expressing a tran-
sition between two states, namely Bi,X , Cj

c,X , Bdownc, Bupc, Bstc stays linear according the
number of species. In the case of the Cj

c,X one can note that their number grows exponentially
according to the inside branching factor of the interaction graph. Fortunately, this factor is rarely
above 4. It should be remarked also that a path composed of successive states requires for its
definition a number of constraints which is proportional to the size of the path.



3.3 CNF encoding

In the following we give the procedure to replace a multivalued variable by a set of Boolean
variables and clauses, and the ideas behind the procedures encoding integer relations.

3.3.1 Boolean representation of a multivalued variable.

We choose a very easy manner to encode in Boolean variables the multivalued variables of the
model. For every variable Xc, Fc,X , Sc and P j

c we introduce as many Boolean variables as the size
of their domains, and a set of clauses specifying that exactly one of these new Boolean variables is
true.
Example: For the variable XcI having the domain {0, 1, 2}, we introduce three Boolean variables
x0, x1, x2 and the following links to XcI and its values: x0 is equivalent to XcI = 0, x1 is
equivalent to XcI = 1, etc. Then, we add the clauses: x0 ∨ x1 ∨ x2, ¬x0 ∨ ¬x1, ¬x0 ∨ ¬x2
and ¬x1 ∨ ¬x2.

For a variable with a domain of l values we obtain 1 clause of l literals, and l(l − 1)/2 clauses
of 2 literals (so with immediate propagation on these two literals in current SAT solvers). As in
our context the variable domains are small, we obtain finally a quite small set of clauses (of a non
penalyzing size) to introduce multivalued variables.

3.3.2 Introduction of relations between (multivalued) variables.

We have to encode only relations with at most two multivalued variables with small domains. In
spite of the lack of heavy encoding problems, we cannot use a trivial way to obtain a clausal form
by developing the formula deduced from the truth table of the initial relation, because in this case
we have still to face an exponential explosion of the number of generated clauses according to the
size of the variable domains. With our method we take into account the fact that exactly one of the
Boolean variables for each possible value of a multivalued variable is true.
Example: We consider a relation of the type B ↔ X = Y , with the domains {0, 1}, {0, 1, 2}
{1, 2, 3} for B, X and Y respectively (like BupcI ↔ ScI = XcI + 1, see section 3.2.3). Let be b,
x0, x1, x2, y1, y2 and y3 the Boolean variables which are linked to the multivalued variables B,
X and Y . To encode this relation, we introduce six clauses relative to the conjunction of the two
following formulae:

• B → X = Y : (¬b ∨ ¬x1 ∨ y1) ∧ (¬b ∨ x1 ∨ ¬y1) ∧ (¬b ∨ ¬x2 ∨ y2) ∧ (¬b ∨ x2 ∨ ¬y2)

• X = Y → B: (b ∨ ¬x1 ∨ ¬y1) ∧ (b ∨ ¬x2 ∨ ¬y2)

From the previous example we have an idea of the encoding algorithm of a relation B ↔ X =
Y . The algorithm loops on the values of B, then these of X and finally these of Y and produces
the implication (clauses) on the values of these different variables.

To do the encoding of our model we need a procedure for every type of relation: B1 ∨ B2,
B1 ∧ B2, B1 ↔ B2, X = Y , X 6= Y , X ≤ Y , X < Y , B → X = Y , X = Y → B,
B → X < Y , X < Y → B, B ↔

∧
i Bi and exactly_one(< list of Bi >), where the B

variables are Booleans and the X and Y variables are potentially multivalued. The size of the
CNF representation for all these relations is linear according to the size of the multivalued variable
domains or to the number of species of the system, except for exactly_one(< list of Bi >) which
produces a quadratic number of clauses according of the number of species but with two literals
only in each clause.



4 Deciphering Gene Regulatory Networks

In this section we give some technical informations about the developped tool. Then we present
some results obtained by queries on the biological model of λGRN. We give also some com-
parisons between our tool based on a SAT technology, and our other tool based on a Constraint
Programming (CP) technology, implementing exactly the same model with straightforward heuris-
tics.

4.1 The developped tool

The developped tool is constituted of:

• an input interface to express easily the biological model (interaction graph) and the query,

• a module which implements at a multivalued level the asynchronous logical description and
which calls the procedures of the CNF encoding module,

• a CNF encoding module,

• an extended version of the SAT solver minisat 2.0 [4] to take into account the queries which
need the set of solutions,

• an output interface to show the solution(s) at a multivalued level.

4.2 Case study: the immunity control of λ-phage

The first example of query concerns the identification of all possible steady states of the λGRN
for any parameter values. Expressing that state X is a steady state means imposing the existence
of a path of two states beginning in the state 〈XcI , Xcro, XcII , XN〉 and reaching the same state
〈XcI , Xcro, XcII , XN〉. Note that this enforcement adds some new clauses related to the variables
associated to the discrete kinetic parameter to the original ones due to the interaction graph. So
all the discrete states of the systems are not possibly or necessarily steady. The query asks for all
the possible assignments of the Boolean variables associated to the integer variables XcI , Xcro,
XcII , and XN which accept at least one possible assignment of all the discrete kinetic parameter
P variables. It is processed by adding a so-called blocking clause to the CNF formula each time a
solution is found (to avoid to find again the same solution), and to relaunch the solver with this aug-
mented CNF formula. The translated problem in CNF contains 234 variables and 838 clauses. We
obtain the 16 potential steady states in less than 0.01s (on a Pentium M 1.8GHz with 1Go of RAM).

The main query, in the case of λGRN, concerns the imposition of the two possible observed
behaviours in response to a infection of a bacterial cell by a λ-phage virus. These behaviours are
reachabilities of the lytic attractor corresponding to the cycle between the two states 〈0, 2, 0, 0〉
and 〈0, 3, 0, 0〉, and of the lysogenic state 〈2, 0, 0, 0〉 from the initial state 〈0, 0, 0, 0〉.

The query to impose these possible behaviors is more general than the previous one in the sense
that it involves paths of states whose length is not known. This length is necessary to generate
the system of constraints. An easy way to overcome this problem is to consider paths with a
length equal to the number of discrete states in space. In the case of λGRN we have a discrete
concentration space of 48 states. But to face this important issue we must find the maximal length
of a path without cycles (redundancy) and corresponding to an instanciated λGRN model accepting
also the both following paths with a known length (the attractors):

• the path of length 2 beginning in 〈0, 0, 0, 0〉 and ending in 〈0, 0, 0, 0〉 (steadiness of the lyso-
genic state),



• the path of three states beginning in 〈0, 2, 0, 0〉, passing in 〈0, 3, 0, 0〉 and returning in 〈0, 2, 0, 0〉
(lytic cycle).

This maximal length is equal to 43 (satisfiability in 1 min. and 13 sec. for a formula with 8304
variables and 52765 clauses). The query to demonstrate the unsatisfiability for a path of 44 states
all different takes about 17 min (with a formula with 8577 variables and 54708 clauses).

With this maximal length we can now search for the coherence of the general model and find
the possible instanciated models. The query imposes the existence of the two previous paths (at-
tractors) and of the two following paths:

• the path of 43 states beginning in 〈0, 0, 0, 0〉 and reaching (in a future step of the path) the
state 〈2, 0, 0, 0〉 (reachability of the lysogenic state),

• the path of 43 states beginning in 〈0, 0, 0, 0〉 and reaching (in a future step of the path) either
〈0, 2, 0, 0〉 or 〈0, 3, 0, 0〉 (reachability of the lytic cycle),

The query asks for all the assignements of the Boolean variables associated to the discrete kinetic
parameter P which accept at least one possible assignment of all the variable associated to the
four paths. The translated problem in CNF contains 9809 variables and 46041 clauses. We obtain
175 coherent models in 6s (7s for a path length equal to 48 if we suppose not known the maximal
length of a path without cycle). The same query with a length of 15 instead of 43 with our tool
based on a CP solver takes about 150s.

5 Conclusions

Analysing the properties of Gene Regulatory Networks is a key problem in systems biology. Our
work aimed at proposing an automated tool for this problem.

GRNs are a type of transition systems which, compared with the more classical application
domains of SAT [2, 6, 7], exhibit a number of interesting specificities:

• The transition relation of the program is itself not completely known and is defined as a
set of constraints that depend upon so-called kinetic parameters. For that reason, the tool
needs to be flexible and to allow queries that go beyond classical reachability or temporal
logics (LTL, CTL). Typical queries involve the parameters. For instance a biologist may ask
"having observed that the system moves from state S1 to state S2, which parameter values
are possible?".

• The system is a discrete abstraction allowing to reason on a biological system which, in
reality, evolves in continuous time and involves continuous quantities (concentrations of
proteins and kinetic parameters). We think that the application is therefore exciting in that
we are not modeling a traditional, discrete, digital system, but proteins interacting by activa-
tion/inhibition mechanisms.

An important conclusion of our work is that a translation to Boolean constraints is a good
approach allowing to solve a large range of queries on this new kind of transition systems. This,
we argued, can be explained by the fact that it naturally involves complex Boolean combinations
of simple numerical constraints, and that the discrete variables have small domains that are easily
converted into Booleans.

On the technical side, a key contribution of the paper is to present the whole abstraction process
used for GRNs, from the description of the biological problem to its modeling using discrete
constraints. It details, in particular, the encoding into Boolean constraints which is one key to
reach good performance.
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