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Abstract— The aim of this paper is to describe a 3D-2D
ultrasound feature-based registration method for navigated
prostate biopsy and its first results obtained on patient data.
A system combining a low-cost tracking system and a 3D-
2D registration algorithm was designed. The proposed 3D-
2D registration method combines geometric and image-based
distances. After extracting features from ultrasound images, 3D
and 2D features within a defined distance are matched using
an intensity-based function. The results are encouraging and
show acceptable errors with simulated transforms applied on
ultrasound volumes from real patients.

I. INTRODUCTION

Prostate cancer is the second most common cancer world-
wide for males [1]. Prostate biopsy procedures, performed to
obtain and analyze tissue samples of the gland, are required
for diagnosis. The clinical standard protocol is currently
performed under UltraSound (US) control following a sys-
tematic protocol. Unfortunately, prostate cancer diagnosis is
complicated by the lack of image quality and the low intrinsic
contrast between tumor and non-tumor on US images

Conventional biopsies are performed under TRansrectal
UltraSound (TRUS) guidance (see fig. 1). In clinical prac-
tice, a 12-core biopsy protocol is usually performed. These
12 samples have to be well-distributed and located in 12
different 3D anatomical regions of the prostate in order to
obtain a reliable cancer diagnosis. Precisely localizing the
biopsy sites is challenging because the gland has a symmetric
shape and because the prostate moves and is deformed by
the patient motion and the TRUS probe pressure.

Fig. 1. TRUS-guided procedure (Image from Terese Winslow, the National
Cancer Institute website).

Assisted prostate biopsy has been widely studied over the
last fifteen years in order to mitigate the presented problems.
Its objectives are to locate the exact position of the samples
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and to guide the clinician accurately to specific targets. The
clinically available systems mainly combine the ability to
track the US probe, using a robot [2] or a localizer [3], [4],
to the ability to track the prostate from the image information
[5].

Various approaches were investigated to register TRUS
images during biopsy procedure to an initially acquired 3D
image (see Table I for a short bibliography comparison).

Reference
Tracking
system Registration Real-time

Xu et al.
[3], [6] EM

2.5D-3D US, Iconic,
Rigid yes

Baumann
et al. [5] no

3D-3D US, Iconic,
Elastic & Rigid no

De Silva
et al. [4] EM

2D-3D US, Iconic,
Rigid yes

Khallaghi
et al. [9] EM

2D-3D US, Iconic,
Rigid & FE Model no

TABLE I
MAIN LITERATURE OF US REGISTRATION METHODS FOR PROSTATE

BIOPSY. EM : ELECTROMAGNETIC

The method presented by Xu et al. [3], [6] is based on real-
time 2D TRUS - MR images fusion using a electromagnetic
tracking and intraoperative image registration to superimpose
MR image on US image, without taking prostate deforma-
tion into account. Baumann et al. [7] proposed non rigid
registration of 3D US volumes for accurate estimation of
prostate motion and deformation. However, the tracking is
not performed in real-time due to long 3D volume acquisition
time and computing time. The average accuracy measured on
patient data sets was however submillimetric.

In 2013, De Silva et al. [4] proposed a 2D-3D rigid
US registration to compensate for prostate motion with a
measured accuracy of less than 2 mm and a speed of 1.1 s.
In [8], the same authors improved their method using a
prior model of probe-prostate motion. In [9], Khallaghi et
al. presented a 2D-3D US registration by reconstructing a
thin-volume around the real-time 2D US imaging plane.
They applied a rigid registration and FEM-based technique
for deformation and obtained a mean target registration
error (TRE) of 3.15 mm, although not in real-time.

This paper describes a feasibility study for navigated
prostate biopsies combining a low-cost tracking system and
a 2D-3D US registration method. The general framework
of this newly developed 2D/3D registration aims to provide



accurate navigation in between two precise 3D/3D registra-
tion steps performed using the method presented in [7]. In
this new approach, we propose to use a low-cost inertial
sensor to track the US probe. Inertial sensors are known to
be inaccurate because of noise and drift effects. Our method
takes this inaccuracy into account. Real-time 2D US slices
are rigidly registered with a reference TRUS volume, using
the spatial transform provided by the sensor as an initial
pose estimation. The reference volume is acquired at the
start of the biopsy procedure or at regular time interval when
a 3D/3D registration is performed. The presented 2D/3D
registration is an hybrid method that couples geometric and
image-based registration. We evaluated the performance of
the registration algorithm on patient data in terms of accuracy
and speed. This paper presents an initial evaluation of this
method.

II. MATERIALS AND METHOD

This section describes the three steps of our registration
method: a) feature extraction from 2D and 3D local intensity,
b) feature description using voxel-based information and c)
matching of nearby 2D-3D features in order to compute the
spatial transform between images. A workflow is presented
in Fig. 2.
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Fig. 2. Workflow of our algorithm
A. Feature extraction

The first step consists in extracting interest points from
the 2D and 3D US images. We used the Hessian detector
to detect bidimensional (in 2D) or tridimensional (in 3D)
significant intensity changes. It is invariant to image rotation.
In 2D, the Hessian matrix is a square matrix of second-order
partial derivatives:

H(x) =

[
Lxx(x) Lxy(x)
Lxy(x) Lyy(x)

]
where Lxx(x) is second partial derivative in the x direction
and Lxy(x) is second partial derivative in the x and y

direction. We used derivatives of the image smoothed by
a Gaussian kernel: L(x) = g(σI ⊗ I(x)). A corner measure
is defined as follow:

R = det(H)− αtrace2(H), 0.04 < α < 0.06

It detects blob-like structures at locations where the determi-
nant is maximum. This measure penalizes longer structures
that have small second derivatives in a single direction
[10]. In order to reduce the computational cost, only the
N 2D

R features with the highest R values are kept.
The same principles are applied to compute and select the
N 3D

R features in the 3D images using a 3D Hessian matrix.

(a)

(b)

Fig. 3. (a) 2D US image (left) and its Hessian response map (right), high
values are in red, small in blue. (b) Resulting features with the highest R.

B. Feature description

Once the features are extracted from the images, the next
step consists in associating a descriptor to each feature.
The feature description is required to perform discriminative
matching. To identify both 2D and 3D features, an intensity-
based description is build using the pixel or voxel intensity
and the mean intensity and intensity histogram computed in
a given neighborhood of the feature.

C. Matching

In order to compute the rigid transform between a given
2D image and 3D volume, our matching algorithm minimizes
the distance between the positions of the 2D feature and the
positions of the 3D features using the least square method.
The Iterative Closest Points (ICP) algorithm [11] is widely
used for geometric alignment of 3D models when an initial
estimate of the relative pose is known. It iteratively refines
the transform by repeatedly generating pairs of correspond-
ing features and minimizing an error metric, generally an
Euclidian distance.
The four steps of our matching algorithm are illustrated in
Fig. 4.

1) Initial transform: The first step consists in initializing
the algorithm using the Tsensor transform given by the
inertial sensor. This transform gives an initial mapping of
the 2D feature set F2D in the 3D world coordinate system.
Each 2D features have an initial position in 3D.



2) Inliers selection: At each iteration, candidates in the
3D feature set F3D, named inliers, are selected by consid-
ering the closest geometric neighbors of the 2D features
(i.e., all the 3D features that are under a given dinliers
distance to a 2D feature). A k-d tree is used to accelerate
this selection. The distance threshold dinliers is initialized at
the first iteration and is then decreased at each iteration in
function of the minimization error obtained at the end of the
iteration. This step optimizes the minimization process and
improve the convergence of the ICP algorithm.

(1) (2)

(3) (4)

Fig. 4. (a) Initial transform (b) Inlier’s selection (c) Point matching (d)
Minimization

3) Voxel-based features matching: The next stage of the
ICP algorithm is to associate a 2D feature to one and only
one 3D feature. It combines the geometric pre-selection
with an intensity-based distance d(f1, f2). For each feature
f2D ∈ F2D, the nn geometrically closest 3D features are
selected. For each of them, d(f2D, f3D) is computed and
the 3D feature which minimizes this distance is paired to
the considered 2D feature.

The distance d(f1, f2) combines three terms based on the
local intensity of the features in order to get reliable pairing.
d(f1, f2) is defined as follows:

d(f1, f2) = α1d1 + α2d2 + α3d3, (1)

where:
α1 = α2 = α3 = 1

3 . d1 compares the mean intensity in the
neighborhood of the features:

d1(I1, I2) =
‖ Ī1 − Ī2 ‖

256
(2)

d2 uses the Bhattacharyya distance which quantifies the
similarity of two normalized histograms:

d2(H1,H2) =

∑
I(H1 − H̄1)(H2 − H̄2)√∑

I(H1 − H̄1)2
∑

I(H2 − H̄2)2
(3)

with
H̄k =

1

N

∑
J

Hk(J)

N is the total number of histogram bins.
And d3 consists in a sum of squared distance:

d3 =

√
1

|Ω|
∑
j∈Ω

(I1(j)− I2(j))2 (4)

4) Updating the transform: The final step of ICP algorh
computes the transform which minimizes the geometric
distance between paired features. [12] is used for direct least-
square error minimization. This step is iterated until conver-
gence or failure (when a maximum number of iterations is
reached).

III. VALIDATION

A. Data

Patient data have been collected from the Urosta-
tion®system (Koelis®, France) and have been acquired
during a prostate biopsy procedure using a US probe. Each
dataset is composed of 3D volumes with 300 × 159 × 222
voxels and a voxel size of 0.42mm× 0.42mm× 0.42mm.

B. Parameter selection

There are 6 parameters that control algorithm operation
and performance:
• N 2D

R = 300, N 3D
R = 20, 000

• α = 0.05
• window size : 5× 5 pixels in 2D and 5× 5× 5 voxels

in 3D
• dinliers = 40
• nn = 5
• ICP algorithm convergence: rmsi−1 − rmsi < 0.01 or
nbiteration > 150

These parameters were empirically estimated to provide a
tradeoff between computing time and accuracy.

C. Registration accuracy under simulated rotation and
translation

The proposed 2D-3D registration method was evaluated
on 5 patient datasets. For each dataset, a 2D slice was
extracted from the 3D volume with known transforms. To
simulate artificial rotations and translations mimicking the
TRUS probe movements, these transforms were either a
rotation ranging from −15◦ to 15◦ (by steps of 1◦) around
each axis or a translation ranging from −10mm to 10mm
(by steps of 0.5mm) on each axis. We then registered the
transformed 2D slices to the 3D volume using our method
and computed the resulting registration error. For each image,
4 different starting positions were used to simulate the 2D
slice initial Tsensor transform. A total 864 registrations per
3D volume were computed, for an overall total of 4320. RMS
error is measured between ground truth 2D feature’s position
(i.e., the feature actual positions in the extracted 2D slice)
and their position after registration.

Table II and III show the registration results. Rotation
around x-axis, y-axis and z-axis corresponds respectively to
an out-of-plane rotation around the horizontal axis, an out-of-
plane rotation around a vertical axis and an in-plane rotation.

D. Computing-time

Running times are for a C++ implementation running on a
Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz processor.
Each 2D-3D registration took less than 2 seconds (2D
features extraction being faster than the matching procedure).



RMS(mm)
rotation

around x-axis
rotation

around y-axis
rotation

around z-axis
Mean 3.53 1.97 2.71

Std dev 3.86 1.99 2.63
<5mm 74% 88% 80%

TABLE II
RESULTS OF REGISTRATION FOR ROTATION.

RMS(mm)
translation
on x-axis

translation
on y-axis

translation
on z-axis

Mean 2.23 1.73 2.74
Std dev 2.21 1.62 2.75
<5mm 84% 91% 78%

TABLE III
RESULTS OF REGISTRATION FOR TRANSLATION.

IV. DISCUSSION AND CONCLUSION

We presented an initial feasibility study of a novel 2D-
3D feature-based registration method. The final objective
is to perform real-time US rigid registration to follow the
prostate during a freehand TRUS-guided prostate biopsy. The
feature-based registration uses image intensity information to
enhance point correspondence. These first results are encour-
aging but a more extensive evaluation is required to confirm
this. Next step will consist in registering data coming from
two different 3D volumes of the same patient: slices should
be extracted from one volume and registered to the other
volume. It should allow us to assess the algorithm in presence
of both noise in the images and prostate deformation between
two acquisitions.

To improve our method, a multi-scale version of the
detector can be implemented to extract features and also
other similarity measure can be used to compare features.
Besides, more experiments should be performed to estimate
parameter selection. Finally, decreasing the registration time
can be accomplished with a GPU implementation.
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