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Abstract

Chamfer distances are widely used in image analysis and many authors have investigated the computation of optimal chamfer mask

coefficients. Unfortunately, these methods are not systematized: calculations have to be conducted manually for every mask size or image

anisotropy. Since image acquisition (e.g. medical imaging) can lead to discrete anisotropic grids with unpredictable anisotropy value,

automated calculation of chamfer mask coefficients becomes mandatory for efficient distance map computations. This article presents an

automatic construction for chamfer masks of arbitrary sizes. This allows, first, to derive analytically the relative error with respect to the

Euclidean distance, in any 3-D anisotropic lattice, and second, to compute optimal chamfer coefficients. In addition, the resulting chamfer

map verifies discrete norm conditions.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Distance transformations (DTs) turn binary images into

grey-level images where the value of each foreground pixel

corresponds to its shortest distance to the background. They

are widely used in image analysis since they allow

recovering morphometric features of a binary shape.

Among other applications, they can be used to compute

skeletons, medial axis [1], or Voronoı̈ diagrams or assist in

shape-based interpolation [2].

The primary motivation of this work is the computation of

statistically significant morphometric parameters of the

cerebral microvasculature (the micro-vessels comprise

capillaries, small veins and arteries of the cerebral vascu-

lature). This information could help understand and/or

simulate functional imaging modalities (e.g. TEP or fMRI)

[3]. While the smallest of the micro-vessels have a diameter
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of a few micrometers, we want to process large areas (a few

millimeters) in cerebral histological slices (see Ref. [4] for

details about the used material). This results in a huge

amount of data. The imaged portion of cerebral slice shown

in Fig. 1 was typically acquired with a confocal microscope

as a mosaic of 18 512!512!128 3-D images, with voxel

size 1.22!1.22!3 mm3. This corresponds to a virtual image

of approximately 3400!1400!128 voxels.1 Distance

computation is used on these mosaics to extract the center

lines of the vessels and to compute their radii [5].

Clearly this volume of data cannot be entirely loaded

(and processed) in the central memory of standard

computers. This makes the adaptation of Euclidean distance

transform (EDT) algorithms [6] less attractive than chamfer

distance computation that can be easily adapted to mosaics.

Optimal chamfer coefficients for isotropic images can be

found in the literature [7]. Resampling the anisotropic

mosaic presented in Fig. 1 into an isotropic lattice will

approximately double the volume of input data (here from

450 to 900 Mb). While modern computer disk capacity is
Image and Vision Computing 23 (2005) 143–158
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1 Overlaps of about 50 voxels exist between adjacent images for

automatic and precise realignments of all images to form a mosaic [5].
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Fig. 1. Portion (maximum intensity projection) of a cerebral histological slice, acquired as an image mosaic (corresponding to an area of 4!1.8 mm2) and a

detail of distance map on this mosaic.
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sufficient to store typically a few anisotropic mosaics

together with the associated results, they cannot accommo-

date as many in the isotropic case (a typical acquisition

consists in a mosaic of more than 100 images, covering an

area between 25 and 100 mm2).

The computation of optimal chamfer coefficients for

anisotropic images has also been discussed in the literature

[8], but here again in a non-automated fashion. Inevitable

variations of the anisotropy factor (the ratio between

the inter-slice distance and the pixel size) between

acquisitions prompted us to develop a fully automated

algorithm to compute optimal chamfer coefficients in

anisotropic lattices.

The remainder of this article is organized as follows. In

Section 2, we recall some properties of chamfer distances

and chamfer mask, the notion of mask convexity is

introduced, and the computation of optimal chamfer

coefficients, as presented in the literature, is discussed.

The analytical derivation of the relative error between

chamfer and Euclidean distances is detailed in Section 3

while Section 4 presents the norm conditions. Section 5

describes the automatic construction of a chamfer mask and

the computation of sets of optimal chamfer coefficients.

Some results are provided in Section 6.
2. Recalls on chamfer distance

In this section, we recall the properties of chamfer masks,

as proposed in Ref. [9] and detailed in Ref. [10]. We then

describe classical ways to compute optimal chamfer mask

coefficients.

We denote R the field of real numbers, and Z the ring of

integers. A vector space is defined with a commutative field

K. Given n2N
�; then Kn is a vector space on K. For

example R
n is a vector space on R. However, since Z is a

commutative ring and not a field, Z
n does not define a

vectorial space on Z.

Distances and norms are usually defined on the finite

space R
n and takes real values. In discrete geometry,

however, we sometimes need to have discrete distances

defined on Z
n with their values in Z. Since Z

n is not a vector
space, the notion of distances and norms have to be

extended.

In the following, given a subgroup F of R, we denote by

pZ(pi)iZ1,.,n an element of Fn where ci2[1,n], pi2F. A

vector v will also be denoted by (vi)iZ1,.,n.
2.1. Distance and norm

Definition 2.1 (Distance) Let E be a non-empty set (e.g. Z
n),

and F a subgroup of R. A distance on E, taking its value in F,

called (d, E, F), is an application d: E!E1F which

satisfies the following properties:

ðpositivityÞ cp;q2E dðp;qÞR0

ðdefinitionÞ cp;q2E dðp;qÞZ05pZq

ðsymmetryÞ cp;q2E dðp;qÞZdðq;pÞ

ðtriangular inequalityÞ cp;q;r2E dðp;qÞ%dðp;rÞCdðr;qÞ

d1, d2 (the Euclidean distance, also denoted dE), and dN;

defined as follows, are usual distances in R
n :

d1ðp; qÞ Z
Xn

iZ1

jqi Kpij; d2ðp; qÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

iZ1

jqi Kpij
2

s
;

dNðp; qÞ Z max
iZ1;.;n

jqi Kpij

A discrete distance d is defined as a distance ðd;Zn;ZÞ: d1

and dN are obviously discrete distances, but not dE.

Moreover, neither the square, nor the truncature of dE are

distances (they do not satisfy triangular inequality).

Unfortunately, dE is the most commonly used continuous

distance, because of its rotation invariance. Chamfer

distances offer a way to approximate a proportional

estimation of the Euclidean distance in the discrete metric

space ðZn;ZÞ:

A norm is usually defined on a vector space. The notion

of module allows to generalize the notion of vector space to

sets as Z
n: A module is abstractly very similar to a vector

space although, in modules, coefficients are taken in rings

(such Z).



1,x Z x

,xÞ Z ðlmÞ,x

Þ,x Z l,x Cm,x

yÞ Z l,x Cl,y

Þ
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Definition 2.2 (Module) Let A be a commutative ring

(e.g. Z), with identity elements noted 0 and 1. A set E

(e.g. Z
n) defines a module on A (or A-module) called (E, A),

if E owns a commutative group operation (C), an external

law ($) and satisfies the following properties:

ðidentityÞ cx2E

ðassociativityÞ cx2E;cl;m2A; l,ðm

ðdistributivity of scalar sumsÞ cx2E;cl;m2A; ðl Cm

ðdistributivity of vector sumsÞ cx; y2E;cl2A; l,ðx C

The main difference between a module and a vector space is

the non-invertibility (with respect to the external law) of the

elements of its associated ring (e.g. 22Z; but 1
2
;Z). A base

of a module of dimension n is a family of n independent

vectors (vi)iZ1,.,n, i.e.

ca2An;
Xn

iZ1

aivi Z 0; 5ci2½1;.; n�ai Z 0:

But, a linearly independent family of n vectors may not be a

base of An. We define a norm in a module in the same way as

in a vector space.

Definition 2.3 (Norm) Let (E, A) be a module, and F be a

subgroup of R. A norm on (E, A) taking its value in F is an

application g: E1F which satisfies:

ðpositivityÞ cx2E gðxÞR0

ðdefinitionÞ cx2E gðxÞZ05xZ0

ðtriangular inequalityÞ cx;y2E gðxCyÞ%gðxÞCgðy

ðhomogeneityÞ cx2E;cl2A; gðlxÞZjljgðxÞ

2.2. Distance maps and distance transformations

We now consider an image I as an application from a

finite set E of Z
n to Z.

Definition 2.4 (Distance map) Given a binary image I, let

XZ{p2EjI(p)Z1} be the foreground and �XZ fp2
EjIðpÞZ0g be the background. The distance map of I is

a grey level image where the value of each point of the

foreground corresponds to its shortest distance to the

background, i.e.

DMX :
E/N

p1dðp; �XÞ Z infq2�X dðp; qÞ

(

Exact Euclidean maps can be computed through EDT.

Several EDT have been proposed, using morphological

operators [11,12], filters [13], several path on rows and

columns [14], propagating vectors [15,16], or Voronoı̈

diagrams [17]. A comprehensive review of distance

transformations can be found in Ref. [6]. Practical

implementations lead to time and/or memory consuming
algorithms: this makes them not suitable for our aimed

application that requires extremely simple, fast, and low

memory consuming tools. Chamfer maps, first proposed

by Montanari [18] and popularized by Borgefors [19], are

then an adequate choice because of their generality,
simplicity and efficiency. Indeed, they can be efficiently

computed with a two-scan algorithm [20] and propagation

of local distances through chamfer masks.
2.3. Chamfer masks and chamfer distances

In this section we define more precisely chamfer masks

and chamfer distances definition on a module. Let (E, A) be

a module and F be a subgroup of R.

Definition 2.5 (Chamfer mask) A chamfer mask is a finite

set MC Z fðvk;ukÞ2E !F; 1%k%mg which contains at

least a base of E, and which satisfies the following

properties:

ðpositive weightsÞ ck uk O0 and vk s0

ðcentral symmetryÞc ðv;uÞ2MC 0 ððGviÞ;uÞ2MC

with v Z ðviÞ

We call CðE;A;FÞ the set of chamfer masks in the module

(E, A) with their coefficients in F.

Chamfer mask vectors vk represent legal displacements

in the neighborhood of the central point. Several neighbor-

hood sizes can be considered. The mask size is defined as the

number of voxels (included the central one) in this

neighborhood.

A point p2Z
n is called visible (from the origin O) if

there is no point of Z
n located on the line (Op) between O

and p.

Non-visible points are usually suppressed from the

chamfer masks. Indeed, consider a non-visible point p. By

definition, there exist a point q which verifies ~OpZl ~Oq

with l2Z
C: On one hand, if u ~Op

ZldcðO; qÞ; the mask is

redundant since there are two ways to compute dc(O,p)

(either directly with u ~Op
by propagation from q). On the

other hand, if u ~Op
sldcðO; qÞ; the distance map is no

more homogeneous along ~Op direction.

The suppression of non-visible points from chamfer

masks allows not only to avoid these problems but also to

simplify chamfer coefficients computation. Fig. 2 shows two

examples of 3-D 3!3!3 chamfer mask geometry contain-

ing only visible points.



Fig. 2. Examples of 3-D 3!3!3 chamfer mask geometries.
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Definition 2.6 (Path from p to q) Given a chamfer mask MC

and two points p, q2E, a path from p to q is a sequence of

vectors vk 2MC going from p to q. We obtain:

~pq Z
X

vk2MC

nk,vk

The cost W of the path Ppq is defined by:

WðPpqÞ Z
Xm

kZ1

nk,uk

Since a mask MC contains a base of E, such a path Ppq

always exists for any couple of points (p, q).

Definition 2.7 (Chamfer distance) A chamfer distance dC

between two points p and q in E is the minimum of the costs

associated to paths Ppq linking p to q:

dC Z min
Ppq

WðPpqÞ

2.4. Distance and norm properties of a chamfer mask

Given a module (E, A) and a chamfer mask, the following

propositions hold.

Proposition 2.1. Let (E, A) be a module, and F be a

subgroup of R. Given a chamfer mask MC 2CðE;A;FÞ;

then the chamfer distance dC associated to this mask is a

distance on E.

The proof can be found in Refs. [21,22]. Moreover, Thiel

proved in Ref. [10] that a chamfer distance is a norm on a

vector space.

Proposition 2.2. Let K be a commutative field, E be a vector

space on K and F be a subgroup of R. Given a chamfer mask

MC 2CðE;K;FÞ; then dM induces a norm on (E, K).

A chamfer distance induces a norm on a vector space.

However, Z
n is not a vector space but a module (because

of the non-invertibility of the external law). Thus, for a

chamfer distance to be a norm on a module, additional
constraints have to be verified. To this end, Remy and

Thiel [9] introduced the notion of equivalent rational ball.

Definition 2.8 (Equivalent rational mask) The equivalent

rational mask M0
C of a chamfer mask MC Z fðvk; ukÞ;

1 % k % mg; is defined by:

M0
C Z

xk

uk

;
yk

uk

;
zk

uk

;/

� �
2Q

n : ððxk;yk;zk;.Þ;ukÞ2MC

� �

Each point of the equivalent rational mask is obtained by

dividing the vector vk 2MC by its associated weight uk:

it is then approximately located at unit distance (up to a

multiplicative constant) from the origin. The polyhedron

formed by a triangulation of the equivalent rational

mask is called equivalent rational ball (building a

triangulation with good properties will be addressed in

Section 3.1).

Proposition 2.3. A chamfer mask induces a norm on Z
n if

and only if its equivalent rational ball is convex.

Proof of this proposition can be found in Refs. [9,10].

Fig. 3 shows equivalent rational balls of two chamfer masks:

(a) induces a norm on Z
3; (b) does not.
2.5. Optimal coefficients calculation

A chamfer distance between two points p and q computed

with a chamfer mask MC Z fðvk;ukÞ; 1%k%mg is a

discrete sum of chamfer coefficients: dCðp; qÞZ
Pm

kZ1 nkuk

where ~pqZ
Pm

kZ1 nkvk:

To obtain the best approximation of the Euclidean

distance, optimal weights, that yield the best accuracy, have

to be calculated. This is a pivotal point for chamfer

distances. The first method for this computation was

proposed by Borgefors for dimension 2, 3 or more in

cubic isotropic grids [7,23]. The maximum accuracy

depended on the mask size: to increase precision, the

number of (vk, uk) couples in the chamfer mask had to be

increased.



Fig. 3. Examples of 3-D 5!5!5 chamfer mask equivalent rational balls.
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Some chamfer coefficients calculations are reviewed

below.

In Ref. [23], the coefficient computation for a 2-D 3!3

isotropic chamfer mask is presented. For symmetrical

reasons, there are only two coefficients to be calculated: a

(the horizontal one), and b (the diagonal one), as shown in

Fig. 4 Moreover, only points such that 0%y%x are

considered (other cases are deduced by symmetry). To

find optimal coefficients, Borgefors minimizes the maximal

error of the chamfer distance with respect to the Euclidean

distance. The calculation is performed for the points located

on a straight line xZM (Fig. 5). For each point p(M, y)

located on the line xZM, we get the following quantities:
†
 the Euclidean distance, dEðO; pÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2Cy2

p
;

†
 the chamfer distance, dCðO; pÞZybC ðMKyÞaZyðbKaÞC
Ma; and
†
 the absolute error, EðyÞZdCðyÞKdEðyÞZyðbKaÞC
MaK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2Cy2

p
;

under the conditions bOa and b!2a to be sure to consider

the shortest path.

The derivative of the function E(y), dE=dyZ ðbKaÞKy=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2Cy2

p
cancels for y1 ZMðbKaÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K ðbKaÞ2

p
: The

error is then extremal for three values of y, {0, y1, M},
Fig. 4. 3!3 Mask.
that corresponds respectively to the following three error

values, E0Z(aK1)M, E1Z ðaK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K ðbKaÞ2

p
ÞM; and

E2 Z ðbK
ffiffiffi
2

p
ÞM:

The maximum of these three errors is minimized,

yielding optimal real values for a and b:

aopt Z
1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
K2

p
2

z0:95509.

and

bopt Z
2

ffiffiffi
2

p
K1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
K2

p
2

z1:36930.

Note that aopt!1 and bopt!
ffiffiffi
2

p
: Setting aoptZ1 and bZ

ffiffiffi
2

p

amounts to considering the error along on the horizontal
Fig. 5. Coefficients computation a straight line xZM.



Fig. 6. Coefficients computation on a circle RZM.

Table 1

Summary of different calculation schemes for the 3!3 chamfer mask

Calculation

On a line xZM On a circle RZM

Point

coordinates

P(M,y) Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 Ky2

p
; yÞ

Interval

extremities

y0Z0, y2ZM y0Z0, y2 ZM=
ffiffiffi
2

p

dE(O, P)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 Cy2

p
M

dC(O, P) ybC(MKy)a ybC ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 Ky2

p
KyÞa

Absolute error: Eabs(y)ZdC(O, P)KdE(O, P)

Eabs(y) ðbKaÞyCMaK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 Cy2

p
ðbKaÞyCaK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 Ky2

p
KM

dEabs

dy
ðy1Þ Z 0 y1 Z ðb KaÞM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 K ðb KaÞ2

s
y1 Z

ðb KaÞMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 C ðb KaÞ2

p
Absolute error extrema

Eabs(y0) (aK1)M (aK1)M

Eabs(y1) ðaK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K ðbKaÞ2

p
ÞM ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbKaÞ2 Ca2

p
K1ÞM

Eabs(y2) ðbK
ffiffiffi
2

p
ÞM bffiffiffi

2
p K1

� �
M

Relative error: Erel(y)ZEabs(y)/dE(O, P)

dEabs

dy
ðy1Þ

Z 0

y1 Z M
b Ka

a
y1 Z

Mðb KaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb KaÞ2 Ca2

p

Relative error extrema

Erel(y0) (aK1) (aK1)

Erel(y1)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb KaÞ2 Ca2

p
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb KaÞ2 Ca2

p
K1

Erel(y2)
ffiffi
2

p

2
ð

ffiffiffi
2

p
KbÞ

bffiffi
2

p K1
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and diagonal directions only. The maximum error is located

on a direction at about 23 degrees of the horizontal

direction.

Verwer commented that this approach induces an

anisotropy in the error minimization scheme by giving too

much importance to the diagonal direction [24]. He

proposed an error computation on a unit circle (cf Fig. 6),

which is equivalent to computing a relative error on a

straight line (see Table 1 for a comparison between both

calculation schemes).

In these schemes, the calculation of the optimal

coefficients, aopt and bopt, yields real values, and thus

results in a real chamfer distance (defined on the metric

space ðZn;RÞ). To get a discrete distance, i.e. defined on

ðZn;ZÞ; these optimal real coefficients, aopt and bopt, have to

be approximated by integer coefficients, aint and bint.

Looking for a chamfer distance that is an approximation

of the Euclidean distance up to a real multiplicative

constant, say 3, allows a certain freedom in the choice of

these integer coefficients. The chamfer distance can be

expressed as dC Z
Pm

kZ1 nkuk with uk 2Z; and is related

to the Euclidean distance by dC=3zdE: For instance,

approximating bopt/aopt by bint/aint yields the popular

coefficients (3, 4).

These calculation have been extended to larger masks

[23,24] and to higher dimensions [7]. Anisotropic lattices

have also been considered [8,25,26]. However, those

calculations remain tedious, are not systematized and thus

have to be conducted manually for every mask size or

anisotropy value.

The next section presents the analytical derivation of the

relative error that will further allow the automated
computation of optimal coefficients for any mask size or

anisotropy factor in 3-D.
3. Analytical expression of the error

with Euclidean distance

Given a chamfer mask, MC Z fðvi;uiÞg; the relative error

of the chamfer distance with respect to the Euclidean one

depends locally only on a few coefficients. It will be

demonstrated how a well chosen decomposition of the mask

into regular cones, where the chamfer distance is locally

defined, allows to express analytically this local error, and to

find its local extrema.

Optimizing over all the local errors results in the

computation of the optimal real coefficients {ui,opt} (as

conducted in the above section). To the best of our

knowledge, this has not been addressed in the general case

(i.e. for arbitrary mask size and grid anisotropy) and is

beyond the scope of this work. However, knowledge of

the error extrema allows to compare different sets of

coefficients, and to extract the best sets {ui,int} from all

the sets of integer coefficients sorted in lexicographic

order.
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In the following, we denote the coordinates of

a point p2Z
3; (x, y, z), and the coordinates of a vector

vi 2Z
3; (xi, yi, zi).
Fig. 8. Mask decomposition into regular cones.
3.1. Mask geometry decomposition

According to Definition 2.5, a chamfer mask is

central-symmetric. This allows considering only one

eighth of the space Z
3 for the error calculation, this

calculation being valid for the whole space thanks to

symmetry considerations. In the following, we consider

only the first eighth 1
8

Z
3; delimited by the half-lines (O, x),

(O, y) and (O, z). The reduction of a chamfer mask MC

to this first eighth will be called a mask generator and

denoted M
g
C: Fig. 7 shows the generator of the mask of

Fig. 2(b).

Estimating the error between a chamfer distance and the

Euclidean one can be quite awkward when dealing with

large masks. This difficulty can be reduced if we are able to

define areas where the chamfer distance is locally defined,

that is to say where chamfer distance depends only on few

weights of the chamfer mask. To do so, we decompose the

chamfer mask into cones, a cone being defined by a triplet of

vectors, more exactly into regular cones that exhibit some

interesting properties. Such a decomposition is shown in

Fig. 8.

Definition 3.1 (Continuous cone)A continuous cone hvi, vj,

vki represents the region of R
3 delimited by the vectors vi, vj

and vk. That is:

hvi; vj; vki Z fM 2E : OM
��!

Z li,vi Clj,vj Clk,vk; li; lj; lk 2R
Cg

Definition 3.2 (Discrete cone) A discrete cone hhvi, vj, vkii

is the set of points in Z
3 included in the continuous cone

hvi, vj, vki.
Fig. 7. Reduction of the mask shown in Fig. 2(b) to the first eighth of Z
3:
Definition 3.3 (Regular cone) A regular cone is a discrete

cone hhvi, vj, vkii which verifies Di,j,kZG1 where

Di;j;k Z

xi xj xk

yi yj yk

zi zj zk

�������
�������

A regular cone exhibits the interesting property that

any point of such a cone can be reached by an integer

linear combination of its three generating vectors [18,27]

(see Fig. 9).

Given a point p(x, y, z), finding the coefficients of this

linear combination amounts to solving:

Op Z avi Cbvj Ccvk i:e:

x

y

z

0
@

1
A Z

xi xj xk

yi yj yk

zi zj zk

0
B@

1
CA

a

b

c

0
B@

1
CA

(1)

The solution exists if Di,j,ks0, i.e. the three vectors vi, vj,

and vj are independent, and the coefficients of the linear
Fig. 9. Sample of regular cone.
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combination are

a Z
1

Di;j;k

x xj xk

y yj yk

z zj zk

�������
�������; b Z

1

Di;j;k

xi x xk

yi y yk

zi z zk

�������
�������;

and c Z
1

Di;j;k

xi xj x

yi yj y

zi zj z

�������
������� ð2Þ

If the cone hhvi, vj, vkii is regular, Di,j,kZG1. If p2Z
3; then,

since all coordinates (x, y, z, and xl, yl, zl, for lZi, j, k) are in

Z, the three coefficients a, b, c also belong to Z.

The sign of a determinant, e.g.

xi xj x

yi yj y

zi zj z

�������
�������;

characterizes half-spaces that are separated here by the

plane defined by (O, vi, vj). Since the cone is nothing but the

intersection of three half-spaces, it can be shown that a, b, c

are positive integers for p belonging to hhvi, vj, vkii.

In the following, we will consider only mask generators

decomposed into regular cones, i.e. built with a regular

triangulation. It will be shown in Section 5.1 that, this can be

easily achieved thanks to Farey series. Moreover, for the

sake of simplicity, Di,j,kZC1 can also be assumed without

loss of generality as this corresponds to a reordering of the

vectors vi, vj, and vj.

3.2. Analytical expression of the error

Given a mask generator M
g
C decomposed into regular

cones, the error of the chamfer distance with respect to the

Euclidean one can be computed. To deal with a more

isotropic error distribution, we chose a relative error instead

of an absolute one. Given that the chamfer distance is

an approximation of the Euclidean distance up to a

real multiplicative constant 3 (see Section 2.5), the relative

error is

E Z
1
3

dC KdE

dE

Z
dC

3dE

K1 (3)

This error will allow the comparison of different sets of

coefficients to characterize the best sets to be used in the

practical computation of a chamfer distance.

To facilitate this comparison, we will exhibit the extrema

of this error, computed on the planes xZM, yZM, or zZM.

It has to be pointed out that the extrema calculation can be

conducted independently from a cone to the next, since

cones are regular.

Moreover, we will perform these calculations into

a 3-D anisotropic cubic lattice where dx, dy, and dz are

respectively the Euclidean lengths of a voxel in the x, y, and

z directions.
3.2.1. Chamfer and Euclidean distances and relative

error expressions

Given a regular cone hhvi, vj, vkii of the chamfer mask

generator M
g
C; a point p(x, y, z) of this cone can be expressed

as a linear combination of the three vectors vi, vj, and vk

(Eq. (1)), the three coefficients, a, b, and c, of this linear

combination being given by Eq. (2). By definition, the

chamfer distance between O and p is given by

dCðO; pÞ Z aui Cbuj Ccuk (4)

Replacing a, b, and c by their values (recall that Di,j,kZ1)

and reordering the terms allows to express the chamfer

distance with respect to x, y, and z:

dCðO;PÞ Z ax Cby Cgz

with

a Z ðyjzk KykzjÞui C ðykzi KyizkÞuj C ðyizj KyjziÞuk

b Z ðxkzj KxjzkÞui C ðxizk KxkziÞuj C ðxjzi KxizjÞuk

g Z ðxjyk KxkyjÞui C ðxkyi KxiykÞuj C ðxiyj KxjyiÞuk

8><
>:

(5)

The Euclidean distance of a point p(x, y, z) of the anisotropic

grid to the origin, is simply expressed by:

dEðO; pÞ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x x2 Cd2
y y2 Cd2

z z2

q
The relative error between the chamfer and the Euclidean

distances is then

E Z
ax Cby Cgz

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x x2 Cd2
y y2 Cd2

z z2
q K1

for p belonging to the regular cone hhvi, vj, vkii and a, b, g,

given by Eq. (5).
3.2.2. Error computation on a plane

Depending on the orientation of the cone (see Fig. 8), the

error has to be minimized on either the plane xZM, or yZM

or zZM. Without loss of generality, we will only detail the

case xZM (Ms0). The calculation is conducted in R
3: We

can then get analytical expressions for the error extrema.

The minimum and maximum values of these expressions are

respectively minimum and maximum bounds of the error in

Z
3 : the effective chamfer distance error is then over-

estimated by this calculation.

To compute the error on the plane xZM we consider

points p(M, y, z)ZM(1, y 0, z 0) with y 0Zy/M and z 0Zz/M

inside the triangle (Vi, Vj, Vk) where

Vl Z M;M
yl

xl

;M
zl

xl

� �



Fig. 10. Calculation of the error function on the plan xZM.
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for lZi, j, k (see Fig. 10(a)). On the plane xZM, the relative

error becomes:

Econeðx; yÞ Z
1

3

aM Cby Cgzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x M2 Cd2
y y2 Cd2

z z2
q K1

or

Econeðx
0; y0Þ Z

1

3

a Cby0 Cgz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x Cd2
y y02 Cd2

z z02
q K1
EconeðrÞ Z
1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2

y Y2 Cdz

q

Econe is continuous on the compact triangle (Vi, Vj, Vk).

Fig. 10(b) shows such a function for the unique cone of the
rmax ZK
ðbðyjZ KzjYÞC

ðbðyjZ K
following mask generator: M
g
CZ fðð1; 0; 0Þ; 3Þ; ðð1; 1; 0Þ; 6Þ;

ðð1; 1; 1Þ; 8Þg in an anisotropic image where dxZ1, dyZ1.5,

dzZ2. As Econe is continuous on a compact, it is bounded

and reaches its bounds. There are three possible locations

for its extrema.
(1)
 Within the triangle. Such an extrema is characterized by

vEcone=vy0ZvEcone=vz0Z0 with
vEcone

vy0
ðy0; z0Þ Z

bd2
x K ða Cgz0Þy0d2

y Cbz02d2
z

3ðd2
x Cd2

y y02 Cd2
z z02Þ3=2

vEcone

vz0
ðy0; z0Þ Z

gd2
x Kgy02d2

y K ða Cby0Þz0d2
z

3ðd2
x Cd2

y y02 Cd2
z z02Þ3=2
Those derivatives cancel both at point pZMð1;bd2
x =ad2

y ;

gd2
x =ad2

z Þ and the value of this extremum is:

Econe
ijk Z

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

d2
x

C
b2

d2
y

C
g2

d2
z

s
(6)
(2)
 On an edge of the triangle. There are three edges.

Without loss of generality, only the calculation for

[ViVj] is presented. A point p belonging to this edge can

be represented by pZrViC(1Kr)Vj, with 0%r%1,

yielding the relative error along the edge:
ðbY CgZÞr C ða Cbyj CgzjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z2Þr2 C2ðd2

y yjY Cd2
z zjZÞr Cd2

x Cd2
y y2

j Cd2
z z2

j

K1 (7)

with YZyiKyj and ZZziKzj. The derivative of the above

expression cancels for

aZÞzjd
2
z C ðgðzjY KyjZÞCaYÞyjd

2
y K ðbY CgZÞd2

x

zjYÞCaZÞZd2
z C ðgðzjY KyjZÞCaYÞYd2

y

:

Econe(rmax), also denoted Econe
ij and whose form is too

complicated to be displayed here, is an effective error

extremum if 0%rmax%1. Similar calculations give the

expressions of the extremal errors, Econe
ik and Econe

jk ; along the

two others edges.
(3)
 On a vertex of the triangle. If the extremum of the error

occurs on a triangle vertex, it has one of these three

values:
Econe
i Z

1

3

uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x x2
i Cd2

y y2
i Cd2

z z2
i

q K1 (8)

Econe
j Z

1

3

ujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x x2
j Cd2

y y2
j Cd2

z z2
j

q K1 (9)
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Econe
k Z

1

3

ukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x x2
k Cd2

y y2
k Cd2

z z2
k

q K1 (10)

Gathering the above results enables the computation of the

minimum and maximum values, tcone
min and tcone

max ; of the

relative error for a cone:

tcone
min Z minfEcone

ijk ;Econe
ij ;Econe

ik ;Econe
jk ;Econe

i ;Econe
j ;Econe

k g

tcone
max Z maxfEcone

ijk ;Econe
ij ;Econe

ik ;Econe
jk ;Econe

i ;Econe
j ;Econe

k g
Fig. 11. Geometry of the cone for the local convexity criterion.
3.2.3. Centering the error

The minimum and maximum values of the relative error

for a chamfer mask MC are computed by comparing the

minimum and maximum values of this error for all cones of

the mask generator:

tmin Z minftcone
min =cone2M

g
Cg and

tmax Z maxftcone
max =cone2M

g
Cg

We are interested in the maximum error tZmax(jtmin j,jtmaxj).

To minimize t, the interval [tmin, tmax] have to be centered

with respect to zero, so that tmaxZKtmin. As shown in the

error expressions (6)–(10), t depends on the multiplicative

constant 3 that acts as an additional degree of freedom. The

optimal multiplicative constant 3opt that allows to get

tmaxZKtmin can be computed by

3opt Z 3
tmin Ctmax

2
C1

� �
as shown in Ref. [28]. Despite the above expression, it does

not depend on 3, the original multiplicative constant that

serves for the calculation. Indeed, by definition, we have

tmin Z
dC

3dE

� �
min

K1 and tmax Z
dC

3dE

� �
max

K1

Replacing these values into the 3opt expression yields

3opt Z 3

dC

3dE

� �
min

K1 C dC

3dE

� �
max

K1

2
C1

0
@

1
A

Z
1

2

dC

dE

� �
min

C
dC

dE

� �
max

� �
In the following, topt denotes the optimal maximum relative

error obtained with 3opt as a multiplicative constant, i.e.

toptZtmax(3opt)ZKtmin(3opt).
4. Local norm criteria

We are interested in the automated computation of

optimal sets of chamfer coefficients. To this end, to check

whether a chamfer mask induces a norm or not, the

convexity of the equivalent rational balls has to be verified

automatically (see Section 2.4). This convexity condition
means that every edge of an equivalent rational ball must be

‘turned inside out’. Let this edge be the common edge of

two adjacent cones c1 and c2, the convexity condition can be

analytically expressed by [22]:

cðc1;c2Þ;

c1 Zhhðvi;uiÞ;ðvj;ujÞ;ðvl;ulÞii

and

c2 Zhhðvj;ujÞ;ðvk;ukÞ;ðvl;ulÞii

;

xi xj xk xl

yi yj yk yl

zi zj zk zl

ui uj uk ul

���������

���������
R0:

8>>><
>>>:

(11)

Fig. 11 shows the geometry of a pair of cones for the above

local convexity criterion. This edge checking can be limited

to the edges of the mask generator. Indeed, for a cone c1 of

the mask generator, either its neighboring cone c2 (a cone

sharing an face with c1) is also in the mask generator (and

condition (11) can be tested), or it is outside. In the latter

case, symmetry considerations (see Fig. 11) yield ukZui, vk

being symmetrical to vi with respect to plane (O, vj, vl).
5. Optimal set of coefficients computation

The computation of the optimal coefficients sets is done

by testing the sets of integer coefficients (sorted in

lexicographic order) and by keeping those that have an

optimal maximum relative error inferior to the one of

previously extracted sets. This computation is twofold: first,

for the given mask size, we build the corresponding chamfer

mask together with its associated regular triangulation;

second, when parsing the integer coefficients sets, the local

norm conditions are checked and the optimal maximum

relative error is computed.

5.1. Building mask geometry

The 2-D 3!3 and 3-D 3!3!3 chamfer masks have

already been widely studied in the literature. Dealing with

larger 2-D masks is not that difficult since building a regular

triangulation is straightforward in 2-D. However, in 3-D,

the triangulation of a chamfer mask is not unique, and some

of them may be non-regular. In these cases, the error



Fig. 12. Construction of T2 from T1: The triangle are projected onto the plane xZ1. For left to right, the triangulations correspond respectively to masks

3!3!3 (triangle (Vi, Vj, Vk) of Fig. 10(a)), 3!3!5, 3!5!5, and 5!5!5.
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calculations presented above are not valid any longer. To

overcome this problem, Remy [22] introduced rules to

obtain regular cones by adding vectors to non-regular ones.

But his method imposed to already know the chamfer

coefficients at this stage and may fail to give integer

coefficients to added vectors. For this reason, we chose to

build the chamfer mask together with an associated regular

triangulation using Farey series.

5.1.1. Symmetry considerations

To reduce computations, we can restrict the triangulation

building to the first forty-eighth of space. Indeed, the well-

known 3!3!3 chamfer mask gives a natural regular

triangulation. Its generator (see Fig. 7)

M
g
3!3!3 Z fðð1; 0; 0Þ;u100Þ; ðð1; 1; 0Þ;u110Þ; ðð1; 1; 1Þ;u111Þ;

ðð0; 1; 1Þ;u011Þ; ðð0; 1; 0Þ;u010Þ;

ðð0; 0; 1Þ;u001Þ; ðð1; 0; 1Þ;u101Þg

contains six cones which are: the cone hh(1,0,0), (1,1,0),

(1,1,1)ii, its symmetric with respect to the plans yZz, their

symmetric with respect to the plan xZy, and their

symmetric with respect to the plane yZz (see Fig. 8). To

build larger masks, points have to be added to existing

regular cones that have to be divided into new regular cones.

Thanks to the above considerations, this have to be done
Fig. 13. T3 a
only for the first cone, the rest of the triangulation being

deduced by symmetry.

5.1.2. Farey sets

A Farey set F̂n of order n is a set of all the irreducible

points (y/x, z/x) in Qh ½0; 1� whose denominator does not

exceed n. It turns out that a Farey set contains only visible

points.

The Farey set of order n corresponds to the vectors of the

generator of a 3-D chamfer mask of size (2nC1)3. For

instance, the lexicographically ordered Farey set of order 1,

F̂1 Z
0

1
;
0

1

� �
;

1

1
;
0

1

� �
;

1

1
;
1

1

� �� �
;

corresponds to the set of vectors {(1,0,0), (1,1,0), (1,1,1)}.

The point is that Farey sets can be built recursively. The

Farey set of order nC1, F̂nC1; can be deduced from F̂n by

F̂nC1 Z F̂ng
y

x
;
z

x

� �
Ĉ

y0

x0
;
z0

x0

� ��

with x Cx0%n and
y

x
;

z

x

� �
;

y0

x0
;
z0

x0

� �
2F̂n

�
the addition, Ĉ; being defined by [27]

y

x
;
z

x

� �
Ĉ

y0

x0
;
z0

x0

� �
Z

y Cy0

x Cx0
;

z Cz0

x Cx0

� �
:

nd T4:



Table 2

3!3!3 Chamfer mask coefficients

a b c 3opt topt (%) Time (ms)

1 1 1 1.211 21.13 1

1 2 2 1.207 20.71 5

2 3 3 2.252 12.60 5

2 3 4 2.225 11.24 6

3 4 5 3.244 8.14 7

4 6 7 4.291 7.28 9

7 10 12 7.473 6.76 16

11 16 19 11.740 6.73 35

12 17 21 12.801 6.67 52

19 27 33 20.235 6.50 82

Table 3

5!5!5 Chamfer mask coefficients

a b c d e f 3opt topt Time

1 1 1 2 2 2 1.211 21.13 2 ms

1 2 2 3 3 4 1.207 20.71 8 ms

2 2 3 4 4 5 2.293 14.64 11 ms

2 3 3 5 5 6 2.252 12.60 19 ms

2 3 4 5 6 7 2.225 11.24 20 ms

3 4 5 7 7 9 3.167 5.56 43 ms

4 6 7 9 10 13 4.179 4.49 70 ms

5 7 9 11 12 15 5.149 2.97 80 ms

9 13 16 20 22 28 9.245 2.72 601 ms

11 16 20 25 37 34 11.288 2.62 1.5 s

20 29 35 45 49 62 20.5 2.5 36 s
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5.1.3. Recursive construction of regular triangulations

As discussed in Section 5.1.1, the calculation for the

3!3!3 chamfer mask can be conducted in the triangu-

lation T1 that consists of one single (and regular) cone,

hh(1,0,0), (1,1,0), (1,1,1)ii, or equivalently to the Farey

triangle built with point from F̂1;**
0

1
;
0

1

� �
;

1

1
;
0

1

� �
;

1

1
;
1

1

� �++
:

The vertices of the Farey triangles of the triangulation Tn

are the points of the Farey set of order n. To build TnC1;

the triangles of Tn are split by adding Farey points of order

nC1 along edges. The construction of TnC1 is achieved

when no more Farey points of order nC1 can be added. Let

us describe more precisely this construction process.

The Farey triangles of Tn are put into a list L. Let us

consider a triangle hhA,B,Cii of L, and its largest edge,2 say

AB. Consider C 0ZAĈB: If xACxB%nC1, C 0 is a point of

FnC1; and the triangle hhA, B, Cii is split into the two

triangles hhA, C 0, Cii and hhC 0, B, Cii. If hhA, B, Cii is regular,

these two triangles are also regular. Indeed, let us consider

for instance hhA, C 0, Cii, we, have DAC 0C ZDAðAĈBÞC Z
DAAC ZDABC Z0CDABC ZG1: These two triangles,

hhA, C 0, Cii and hhC 0, B, Cii, are put into the list L for

further examination. The construction of TnC1 ends when no

more triangles of the list can be split with points of FnC1:

It should be pointed out that the intermediary triangu-

lations obtained when building TnC1 from Tn correspond to

intermediary chamfer masks that are regularly triangulated

by construction. Fig. 12 details the construction of T2

from T1 and shows such intermediary triangulations, while

Fig. 13 displays T3 and T4:
3 Consider that u1 is associated with vector x. According to that ui is

fixed, we let ui vary from u1jjvijjN to u1jjvijj1 : there is then a finite
5.2. Depth-first search algorithm

Given that we are able to build the regular triangulation

of the chamfer mask we are interested in, we can now

compute successive integer coefficients {ui} with
2 We consider that large discrepancies between the chamfer and the

Euclidean distances are more likely to occur along the largest edges.
a decreasing maximum relative error, and, that satisfy

norm conditions.

The, first method consists in a brute-force search: all

possible sets3 {ui} are examined in lexicographic order. For

a given coefficients set {ui}, all ui being known, we check

norm conditions (Eq. (11)) and compute topt (Section 3.2.3).

If this topt is inferior to the previous computed optimal

maximum relative errors, the set {ui} is kept as inter-

mediary result.
5.3. Depth-first search with alpha pruning

The norm condition (or LNC, see Eq. (11)) check is local

and involves only four coefficients. If this check fails for one

set {ui}, it will also fail for the sets {u 0
i} that have the same

four coefficients. We can then spare computation time by

checking those norm conditions as soon as possible (as soon

as the four coefficients of two adjacent cones are known),

and not when all the coefficients are known.

The search method for optimal coefficients is described

by the following pseudo-code
1:
numb
4 F

and u

u1jjv
i)1, u1)u1,min
4 {initialisation}
2:
 repeat
3:
 if LNCs defined with {(vj, uj)}jZ1,.,i are success-

fully checked then
4:
 if iZm then {all ui are set}
5:
 Compute topt, print {ui} if required.
6:
 while iR0 AND uiZui,max do
7:
 i)iK1 {go back to previous coefficient}
8:
 if iR0 then
9:
 ui)uiC1 {increment of ui}
10:
 else {the ui are partially set, go to next coefficient}
11:
 i)iC1
12:
 ui)ui,min
er of sets {ui} that are under examination for a fixed u1.

or the first coefficient, u1, chosen as the one associated with x, ui,min

i,max may be provided by the user. For the other coefficients, ui,minZ

ijjN and ui,minZu1jjvijj1 (see Section 5.2).



Table 4

7!7!7 Chamfer mask coefficients

a b c d e f g h i j k l m 3opt topt (%) Time

1 1 1 2 2 2 3 3 3 3 3 3 3 1.211 21.13 5 ms

1 2 2 3 3 4 4 4 5 5 5 6 6 1.207 20.71 52 ms

2 2 3 4 4 5 6 6 6 6 7 7 8 2.293 14.64 87 ms

2 3 3 5 5 6 7 7 8 8 8 9 9 2.252 12.60 226 ms

2 3 4 5 6 7 7 8 8 9 10 10 11 2.225 11.24 469 ms

3 4 5 6 7 9 9 9 10 11 12 13 14 3.158 5.28 5 s

4 6 7 9 10 13 13 14 15 16 17 19 20 4.179 4.49 29 s

5 7 9 11 12 15 16 16 18 19 21 22 24 5.186 3.72 1 min 13 s

5 7 9 11 12 15 16 17 18 19 21 22 24 5.149 2.97 1 min 13 s

7 10 12 16 17 21 22 23 26 27 29 31 33 7.176 2.51 16 min 3 s

8 11 14 18 19 24 25 26 29 30 33 34 38 8.184 2.30 44 min

10 14 17 22 24 30 32 33 36 37 41 43 47 10.224 2.24 4 h 47 min

11 16 19 25 27 34 35 37 41 42 46 49 53 11.238 2.16 11 h

12 17 21 27 29 36 38 40 44 45 49 52 56 12.245 2.04 22 h

14 20 24 31 34 43 44 46 51 53 58 62 67 14.248 1.77 O 24 h

Fig. 14. Examples of 2-D distance maps on anisotropic grids: (a) Euclidean distance map; (b) chamfer map computed with a 3!3 mask originally devoted to

isotropic images; (c) chamfer map computed with a 3!3 anisotropic mask whose coefficients where chosen with our method; (d) chamfer map computed with

a 5!5 anisotropic mask whose coefficients where chosen with our method; (e) Euclidean isolines (red) together with 3!3 anisotropic chamfer map (c) isolines

(green); (f) Euclidean isolines (red) together with 5!5 anisotropic chamfer map (d) isolines (blue) (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.).
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13:
5 A
else {go to next (partial) set}
14:
 while iR0 AND uiZui,max do
15:
 i)iK1 {go back to previous coefficient}
16:
 if iR0 then
17:
 ui)uiC1 {increment of ui}
18:
 until iZ0
6. Results

We present here some examples of chamfer mask

coefficients sets obtained with our method.5 This method

can be applied to isotropic grids as well as anisotropic

grids. For isotropic grids, symmetry allows to reduce
Java implementation is available at http://www.cb.uu.se/~tc18/
even more the research area, and to compute larger

masks.
6.1. Masks for isotropic grids

To simplify notations, we call Farey set points in their

lexicographic order: a(1,0,0), b(1,1,0), c(1,1,1), d(2,1,0),

e(2,1,1), f(2,2,1), g(3,1,0), h(3,1,1), i(3,2,0), j(3,2,1),

k(3,2,2), l(3,3,1), m(3,3,2). We computed coefficient sets,

with u1 varying between 1 and 20.

Table 2 shows the result for a 3!3!3 mask (we stop

Farey triangulation at the first order), Table 3 shows the

result for a 5!5!5 mask (we stop Farey triangulation

at the second order), and Table 4 shows the result for a

7!7!7 chamfer mask (we stop Farey triangulation to the

third order). The last column indicates the time used to find

the set of coefficients with our Java code.

http://www.cb.uu.se/~tc18/


Table 6

3!3!5 Chamfer mask coefficients dxZ1, dyZ1.2, dzZ2

aX aY aZ bXY bXZ bYZ c eX eY eZ 3opt topt (%) Time

1 1 2 3 4 4 4 6 6 8 1.239 23.89 4 ms

2 2 4 3 4 4 4 6 6 8 2.330 16.50 23 ms

2 2 4 3 4 4 5 6 7 8 2.285 14.24 25 ms

3 4 6 5 7 7 8 10 12 13 3.395 13.05 57 ms

4 5 8 6 8 8 9 12 13 16 4.521 13.03 119 ms

4 5 8 6 9 9 10 13 15 17 4.444 11.10 128 ms

5 6 10 8 11 12 12 16 18 22 5.551 11.02 306 ms

5 6 10 8 11 12 13 16 19 22 5.491 9.81 310 ms

9 11 18 14 20 21 23 29 34 39 9.839 9.32 3 s

10 12 20 16 22 23 25 32 37 43 10.912 9.12 5 s

15 18 30 24 33 35 38 48 56 65 16.367 9.12 1 min

18 22 36 28 40 12 46 58 67 78 19.603 8.91 2 min 54 s

Table 5

3!3!3 Chamfer mask coefficients dxZ1, dyZ1.2, dzZ2

aX aY aZ bXY bXZ bYZ c 3opt topt (%) Time

1 1 2 1 2 2 2 1.239 23.89 3 ms

2 2 4 3 4 4 4 2.330 16.50 9 ms

3 4 6 5 6 7 7 3.486 16.20 18 ms

3 4 6 5 7 7 7 3.448 14.94 25 ms

3 4 6 5 7 7 8 3.392 13.05 26 ms

4 5 8 6 9 9 10 4.474 11.86 38 ms

5 6 10 8 12 12 13 5.580 11.56 72 ms

8 10 16 13 18 19 20 8.897 11.21 178 ms

9 11 18 14 20 21 23 9.973 10.81 288 ms

13 16 26 21 30 31 33 14.397 10.75 698 ms

15 18 30 24 34 35 38 16.899 10.66 1.2 s

19 23 38 30 43 45 48 21.010 10.58 3 s

Table 7

3!5!5 Chamfer mask coefficients dxZ1, dyZ1.2, dzZ2

aX aY aZ bXY bXZ bYZ c eX eY eZ dXY dXZ dYX dYZ dZX dZY 3opt topt

(%)

Time

1 1 2 1 2 2 2 2 3 4 2 2 2 3 4 4 1.180 17.99 24 ms

2 2 4 3 4 4 4 5 6 8 4 5 5 6 8 8 2.243 12.13 48 ms

4 5 8 6 8 8 9 11 13 16 8 11 11 12 16 16 4.474 11.842 784 ms

4 5 8 6 10 9 10 12 15 18 9 12 11 14 18 17 4.444 11.10 868 ms

5 6 10 7 11 10 11 13 16 20 10 13 13 15 20 20 5.540 10.79 2 s

5 6 10 7 10 10 11 14 16 20 11 13 13 15 20 20 5.511 10.23 2 s

5 6 10 8 11 12 13 16 19 22 12 14 14 18 21 21 5.509 10.17 3 s

5 6 10 8 12 12 13 16 19 22 12 15 14 18 21 21 5.468 9.37 3 s

6 7 12 9 13 14 15 18 22 25 14 17 16 21 25 24 6.550 9.46 9 s

6 7 12 9 13 14 15 18 22 25 14 17 16 21 24 25 6.542 9.04 9 s

7 8 14 10 15 15 16 20 24 28 15 19 18 23 28 28 7.631 9.01 21 s

7 8 14 11 15 16 17 21 25 29 16 19 19 24 29 28 7.617 8.81 26 s

10 12 20 15 21 22 24 29 35 41 22 27 26 33 41 40 10.877 8.77 34 s

10 12 20 15 24 22 24 29 35 43 22 29 26 33 43 41 10.856 8.56 34 s

11 13 22 16 23 24 26 32 38 44 24 30 28 36 44 44 11.923 8.39 14 min 55 s

11 13 22 17 23 24 26 32 38 44 24 30 29 36 44 44 11.922 8.38 16 min 4 s

12 14 24 18 25 26 28 34 41 48 26 32 31 39 48 48 13.001 8.34 29 min 9 s

15 18 30 23 33 34 37 45 54 63 34 42 40 51 62 61 16.223 8.15 4 h 23 min

16 19 32 24 35 36 39 48 57 66 36 44 42 54 65 65 17.302 8.14 7 h 23 min

16 19 32 25 35 36 39 48 57 66 36 44 43 54 65 65 17.301 8.13 7 h 44 min

17 20 34 26 37 38 41 50 60 70 38 46 45 57 70 68 18.379 8.11 12 h 17 min
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Table 8

3!3!3 Chamfer mask coefficients for dxZ1, dyZ1, dzZ1.5

aXZaY bXY aZ bXZZbYZ c 3opt topt(%) Time

1 1 2 2 2 1.313 31.31 3 ms

1 2 2 2 2 1.222 22.20 6 ms

2 2 3 3 3 2.347 17.35 8 ms

2 3 3 4 4 2.232 11.59 12 ms

4 6 6 7 8 4.393 9.83 36 ms

5 7 8 9 10 5.452 9.04 62 ms

8 11 12 14 16 8.705 8.81 234 ms

12 17 18 22 25 13.026 8.57 488 ms

16 23 24 29 33 17.347 8.42 1.28 s

17 24 26 31 35 18.176 8.33 3 s

Coefficients are ordered as in Ref. [8]. Sets in bold have also been found by

Sintorn.
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These tables allow to choose a trade-off between

precision and computational time when computing chamfer

distances. Indeed, if we use Rosenfeld’s algorithm,
†
 with a 3!3!3 mask, the algorithm performs 13

operations on each pixel and the maximum error is

about 6.5%,
†
 with a 5!5!5 mask, the algorithm performs 37

operations on each pixel and the maximum error is

about 2.5%,
†
 with a 7!7!7 mask, the algorithm performs 97

operations on each pixel and the maximum error is less

than 2%.

6.2. Anisotropic masks

6.2.1. 2-D distance maps

Fig. 14 shows a distance computed from the center point

of an anisotropic 2-D image (dxZ1 and dyZ2).

6.2.2. 3-D chamfer masks

Here, we present results for 3-D chamfer masks

computed in an anisotropic grid with dxZ1.0, dyZ1.2 and

dzZ2.0. The notations of coefficients as are follows:

aX(1,0,0), aY(0,1,0), aZ(0,0,1), bXY(1,1,0), bXZ(1,0,1),

bYZ(0,1,1), c(1,1,1), dXY(2,1,0), dXZ(2,0,1), dYX(1,2,0),

dYZ(0,2,1), dZX(1,0,2), dZY(0,1,2), eX(2,1,1), eY(1,2,1),

eZ(1,1,2), fXY(2,2,1), fXZ(2,1,2), fYZ(1,2,2).

Table 5 shows the result for a 3!3!3 chamfer mask.

Table 6 shows the result for a 3!3!5 mask, which means

that we stopped the Farey triangulation at the first new point

of the second order. Table 7 shows the result for a 3!5!5

mask.

Our results can also be compared with coefficients

found in Ref. [8]. Table 8 presents coefficients obtained for

dxZdyZ1 and dzZ1.5.
7. Conclusion

An automated approach to compute optimal chamfer

norm coefficients for mask of arbitrary size and for lattice of
arbitrary anisotropy has been described. It was enabled by

the automated construction of the chamfer mask together

with its regular triangulation, this step being based on Farey

series. The decomposition of the chamfer mask into regular

cones allowed us to derive analytical expressions of the

error extrema. By accumulating the error extrema values for

all the triangle, calculating the maximum relative error for a

set of chamfer coefficients became straightforward. The

above error calculation, together with the automated mask

construction, was used to compute optimal chamfer

coefficients for different mask sizes and grid anisotropies.

In addition, these coefficient sets satisfy norm constraints,

and thus yield scale invariant chamfer maps.
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